theorem
injective_of_localization
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Injective ⇑((map' J.primeCompl) f))
:
theorem
surjective_of_localization
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Surjective ⇑((map' J.primeCompl) f))
:
theorem
bijective_of_localization
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ⇑((map' J.primeCompl) f))
:
noncomputable def
linearEquivOfLocalization
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ⇑((map' J.primeCompl) f))
:
Equations
Instances For
theorem
linearEquivOfLocalization_apply
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(f : M →ₗ[R] N)
(h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ⇑((map' J.primeCompl) f))
(m : M)
:
(linearEquivOfLocalization f h) m = f m