Documentation

ModuleLocalProperties.Isom

theorem injective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Injective ((map' J.primeCompl) f)) :
theorem surjective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Surjective ((map' J.primeCompl) f)) :
theorem bijective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) :
noncomputable def linearEquivOfLocalization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) :
Equations
Instances For
    theorem linearEquivOfLocalization_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) (m : M) :