Documentation

ModuleLocalProperties.Isom

theorem injective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (x : J.IsMaximal), Function.Injective ((map' J.primeCompl) f)) :
theorem surjective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (x : J.IsMaximal), Function.Surjective ((map' J.primeCompl) f)) :
theorem bijective_of_localization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (x : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) :
noncomputable def linearEquivOfLocalization {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (x : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) :
Equations
Instances For
    theorem linearEquivOfLocalization_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (h : ∀ (J : Ideal R) (x : J.IsMaximal), Function.Bijective ((map' J.primeCompl) f)) (m : M) :
    theorem localization_injective {R : Type u_4} {S : Type u_5} [CommRing R] [CommRing S] [Algebra R S] (p : Submonoid R) [IsLocalization p S] {M : Type u_6} {N : Type u_7} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower R S N] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_8} {Q : Type u_9} [AddCommGroup P] [Module R P] [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] {g : M →ₗ[R] P} (h : Function.Injective g) :
    theorem injective_localizationPreserves {R : Type u_4} [CommRing R] (p : Submonoid R) {M : Type u_6} {N : Type u_7} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_8} {Q : Type u_9} [AddCommGroup P] [Module R P] [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] {g : M →ₗ[R] P} (h : Function.Injective g) :
    theorem surjective_localizationPreserves {R : Type u_4} [CommRing R] (p : Submonoid R) {M : Type u_6} {N : Type u_7} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_8} {Q : Type u_9} [AddCommGroup P] [Module R P] [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] {g : M →ₗ[R] P} (h : Function.Surjective g) :
    theorem bijective_localizationPreserves {R : Type u_4} [CommRing R] (p : Submonoid R) {M : Type u_6} {N : Type u_7} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type u_8} {Q : Type u_9} [AddCommGroup P] [Module R P] [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] {g : M →ₗ[R] P} (h : Function.Bijective g) :