Documentation

ModuleLocalProperties.Flat

theorem LocalizedModule.map'_mk {R : Type u_1} (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] {N : Type u_4} [AddCommGroup N] [Module R N] (S : Submonoid R) (f : N →ₗ[R] M) (n : N) (s : S) :
noncomputable def tensor_eqv_local {R : Type u_1} (M : Type u_2) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] :
Equations
noncomputable def eqv1 {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Equations
noncomputable def eqv' {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Equations
noncomputable def lmap {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Equations
noncomputable def rmap {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Equations
noncomputable def eqv {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Equations
theorem tensor_eqv_local_apply {R : Type u_1} (M : Type u_2) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] (m : M) (sm : S) (r : R) :
theorem tensor_eqv_local_symm_apply {R : Type u_1} (M : Type u_2) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] (m : M) (sm : S) :
theorem eqv'_mk_apply {R : Type u_1} (M : Type u_2) (N : Type u_3) [CommRing R] (S : Submonoid R) [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {sm : S} {sn : S} (m : M) (n : N) :
theorem Flat_of_localization {R : Type u_1} (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (h : ∀ (J : Ideal R) (hJ : J.IsMaximal), Module.Flat (Localization.AtPrime J) (LocalizedModule.AtPrime J M)) :
theorem Flat_of_localization_finitespan {R : Type u_1} (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (s : Finset R) (spn : Ideal.span s = ) (h : ∀ (r : { x : R // x s }), Module.Flat (Localization (Submonoid.powers r)) (LocalizedModule (Submonoid.powers r) M)) :
theorem IsLocalization.Flat (R : Type u_1) (R' : Type u_2) [CommRing R] [CommRing R'] [Algebra R R'] (S : Submonoid R) [IsLocalization S R'] :
theorem flat_iff_localization (R : Type u_1) (R' : Type u_2) [CommRing R] [CommRing R'] [Algebra R R'] (S : Submonoid R) [IsLocalization S R'] {M' : Type u_3} [AddCommGroup M'] [Module R M'] [Module R' M'] [IsScalarTower R R' M'] :
theorem flatiff {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {M : Type u_3} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] :