Documentation

Mathlib.RingTheory.Ideal.Defs

Ideals over a ring #

This file defines Ideal R, the type of (left) ideals over a ring R. Note that over commutative rings, left ideals and two-sided ideals are equivalent.

Implementation notes #

Ideal R is implemented using Submodule R R, where is interpreted as *.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

@[reducible, inline]
abbrev Ideal (R : Type u) [Semiring R] :

A (left) ideal in a semiring R is an additive submonoid s such that a * b ∈ s whenever b ∈ s. If R is a ring, then s is an additive subgroup.

Equations
Instances For
    theorem Ideal.zero_mem {α : Type u} [Semiring α] (I : Ideal α) :
    0 I
    theorem Ideal.add_mem {α : Type u} [Semiring α] (I : Ideal α) {a : α} {b : α} :
    a Ib Ia + b I
    theorem Ideal.mul_mem_left {α : Type u} [Semiring α] (I : Ideal α) (a : α) {b : α} :
    b Ia * b I
    theorem Ideal.ext_iff {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} :
    I = J ∀ (x : α), x I x J
    theorem Ideal.ext {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} (h : ∀ (x : α), x I x J) :
    I = J
    theorem Ideal.sum_mem {α : Type u} [Semiring α] (I : Ideal α) {ι : Type u_1} {t : Finset ι} {f : ια} :
    (∀ ct, f c I)it, f i I
    @[simp]
    theorem Ideal.unit_mul_mem_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
    y * x I x I
    @[simp]
    theorem Ideal.mul_unit_mem_iff_mem {α : Type u} [CommSemiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
    x * y I x I
    theorem Ideal.mul_mem_right {α : Type u} {a : α} (b : α) [CommSemiring α] (I : Ideal α) (h : a I) :
    a * b I
    theorem Ideal.mem_of_dvd {α : Type u} {a : α} {b : α} [CommSemiring α] (I : Ideal α) (hab : a b) (ha : a I) :
    b I
    theorem Ideal.pow_mem_of_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) (ha : a I) (n : ) (hn : 0 < n) :
    a ^ n I
    theorem Ideal.pow_mem_of_pow_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) {m : } {n : } (ha : a ^ m I) (h : m n) :
    a ^ n I
    theorem Ideal.neg_mem_iff {α : Type u} [Ring α] (I : Ideal α) {a : α} :
    -a I a I
    theorem Ideal.add_mem_iff_left {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
    b I(a + b I a I)
    theorem Ideal.add_mem_iff_right {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
    a I(a + b I b I)
    theorem Ideal.sub_mem {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
    a Ib Ia - b I
    theorem Ideal.mul_sub_mul_mem {R : Type u_1} [CommRing R] (I : Ideal R) {a : R} {b : R} {c : R} {d : R} (h1 : a - b I) (h2 : c - d I) :
    a * c - b * d I