Documentation

ModuleLocalProperties.Defs

Local properties of modules #

In this file, we define local properties of modules in general.

@[reducible, inline]
abbrev IsLocalizedModule.AtPrime {R : Type u_1} {M : Type u_2} {M' : Type u_3} [CommSemiring R] (J : Ideal R) [J.IsPrime] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') :
Equations
Instances For
    @[reducible, inline]
    abbrev LocalizedModule.AtPrime {R : Type u_1} [CommSemiring R] (J : Ideal R) [J.IsPrime] (M : Type u_2) [AddCommMonoid M] [Module R M] :
    Type (max u_1 u_2)
    Equations
    Instances For
      @[reducible, inline]
      abbrev IsLocalizedModule.Away {R : Type u_1} {M : Type u_2} {M' : Type u_3} [CommSemiring R] (x : R) [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (f : M →ₗ[R] M') :
      Equations
      Instances For
        @[reducible, inline]
        abbrev LocalizedModule.Away {R : Type u_1} [CommSemiring R] (x : R) (M : Type u_2) [AddCommMonoid M] [Module R M] :
        Type (max u_1 u_2)
        Equations
        Instances For
          noncomputable def map' {R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {N : Type u_3} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
          Equations
          Instances For
            def IsLocalizedModulePreserves (P : (R : Type u) → (M : Type v) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

            A property P of R-modules is said to be preserved by localization if P holds for p⁻¹M whenever P holds for M.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def LocalizedModulePreserves (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

              A property P of R-modules is said to be preserved by localization if P holds for p⁻¹M whenever P holds for M.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def OfLocalizedModuleMaximal (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                A property P of R-modules satisfies OfLocalizedModuleMaximal if P holds for M whenever P holds for Mₘ for all maximal ideal m.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def OfLocalizedModuleFiniteSpan (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                  A property P of R-modules satisfies OfLocalizedModuleFiniteSpan if P holds for M whenever there exists a finite set { r } that spans R such that P holds for Mᵣ.

                  Note that this is equivalent to OfLocalizedModuleSpan via ofLocalizedModuleSpan_iff_finite, but this is easier to prove.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def OfLocalizedModuleSpan (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                    A property P of R-modules satisfies OfLocalizedModuleSpan if P holds for M whenever there exists a set { r } that spans R such that P holds for Mᵣ.

                    Note that this is equivalent to OfLocalizedModuleFiniteSpan via ofLocalizedModuleSpan_iff_finite, but this is easier to prove.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem ofLocalizedModuleSpan_iff_finite (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :
                      def LinearMap.LocalizedModulePreserves (P : {R : Type u} → [inst : CommRing R] → {M : Type v} → [inst_1 : AddCommGroup M] → [inst_2 : Module R M] → {N : Type v'} → [inst_3 : AddCommGroup N] → [inst_4 : Module R N] → (M →ₗ[R] N)Prop) :

                      A property P of ring homs is said to be preserved by localization if P holds for M⁻¹R →+* M⁻¹S whenever P holds for R →+* S.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def OfLocalizedModuleMaximal' (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) (Q : (R : Type u) → (M : Type v) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                        A property P of R-modules satisfies OfLocalizedModuleMaximal if P holds for M whenever P holds for Mₘ for all maximal ideal m.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def OfLocalizedModuleFiniteSpan' (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) (Q : (R : Type u) → (M : Type v) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                          A property P of R-modules satisfies OfLocalizedModuleFiniteSpan if P holds for M whenever there exists a finite set { r } that spans R such that P holds for Mᵣ.

                          Note that this is equivalent to OfLocalizedModuleSpan via ofLocalizedModuleSpan_iff_finite, but this is easier to prove.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def OfLocalizedModuleSpan' (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) (Q : (R : Type u) → (M : Type v) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :

                            A property P of R-modules satisfies OfLocalizedModuleSpan if P holds for M whenever there exists a set { r } that spans R such that P holds for Mᵣ.

                            Note that this is equivalent to OfLocalizedModuleFiniteSpan via ofLocalizedModuleSpan_iff_finite, but this is easier to prove.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem ofLocalizedModuleSpan_iff_finite' (P : (R : Type u) → (M : Type (max u v)) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) (Q : (R : Type u) → (M : Type v) → [inst : CommRing R] → [inst_1 : AddCommGroup M] → [inst : Module R M] → Prop) :