Localization of Submodules #
Results about localizations of submodules and quotient modules are provided in this file.
Main result #
Submodule.localized: The localization of anR-submodule ofMatpviewed as anRₚ-submodule ofMₚ.Submodule.toLocalized: The localization map of a submoduleM' →ₗ[R] M'.localized p.Submodule.toLocalizedQuotient: The localization map of a quotient moduleM ⧸ M' →ₗ[R] LocalizedModule p M ⧸ M'.localized p.
TODO #
- Statements regarding the exactness of localization.
- Connection with flatness.
Let S be the localization of R at p and N be the localization of M at p.
This is the localization of an R-submodule of M viewed as an S-submodule of N.
Equations
- Submodule.localized' S p f M' = { carrier := {x : N | ∃ m ∈ M', ∃ (s : ↥p), IsLocalizedModule.mk' f m s = x}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.
Equations
- Submodule.localized p M' = Submodule.localized' (Localization p) p (LocalizedModule.mkLinearMap p M) M'
Instances For
The localization map of a submodule.
Equations
- Submodule.toLocalized' S p f M' = f.restrict ⋯
Instances For
The localization map of a submodule.
Equations
- Submodule.toLocalized p M' = Submodule.toLocalized' (Localization p) p (LocalizedModule.mkLinearMap p M) M'
Instances For
Equations
- ⋯ = ⋯
The localization map of a quotient module.
Equations
- Submodule.toLocalizedQuotient' S p f M' = M'.mapQ (Submodule.restrictScalars R (Submodule.localized' S p f M')) f ⋯
Instances For
The localization map of a quotient module.
Equations
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
The canonical map from the kernel of g to the kernel of g localized at a submonoid.
This is a localization map by LinearMap.toKerLocalized_isLocalizedModule.
Equations
- LinearMap.toKerIsLocalized p f f' g = f.restrict ⋯
Instances For
The canonical map to the kernel of the localization of g is localizing.
In other words, localization commutes with kernels.