Documentation

Mathlib.Algebra.Module.Submodule.Localization

Localization of Submodules #

Results about localizations of submodules and quotient modules are provided in this file.

Main result #

TODO #

def Submodule.localized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

Let S be the localization of R at p and N be the localization of M at p. This is the localization of an R-submodule of M viewed as an S-submodule of N.

Equations
theorem Submodule.mem_localized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
x Submodule.localized' S p f M' mM', ∃ (s : p), IsLocalizedModule.mk' f m s = x
@[reducible, inline]
abbrev Submodule.localized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.

Equations
@[simp]
theorem Submodule.localized'_bot {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
@[simp]
theorem Submodule.localized'_top {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] :
@[simp]
theorem Submodule.localized'_span {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (s : Set M) :
@[simp]
theorem Submodule.toLocalized'_apply_coe {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : M') :
((Submodule.toLocalized' S p f M') c) = f c
def Submodule.toLocalized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
M' →ₗ[R] (Submodule.localized' S p f M')

The localization map of a submodule.

Equations
@[reducible, inline]
abbrev Submodule.toLocalized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :
M' →ₗ[R] (Submodule.localized p M')

The localization map of a submodule.

Equations
instance Submodule.isLocalizedModule {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
Equations
  • =
def Submodule.toLocalizedQuotient' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

The localization map of a quotient module.

Equations
@[reducible, inline]

The localization map of a quotient module.

Equations
@[simp]
theorem Submodule.toLocalizedQuotient'_mk {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : M) :
instance IsLocalizedModule.toLocalizedQuotient' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
Equations
  • =
theorem LinearMap.localized'_ker_eq_ker_localizedMap {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
theorem LinearMap.ker_localizedMap_eq_localized'_ker {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
@[simp]
theorem LinearMap.toKerIsLocalized_apply_coe {R : Type u} {M : Type v} {N : Type v'} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) (c : (LinearMap.ker g)) :
((LinearMap.toKerIsLocalized p f f' g) c) = f c
noncomputable def LinearMap.toKerIsLocalized {R : Type u} {M : Type v} {N : Type v'} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

The canonical map from the kernel of g to the kernel of g localized at a submonoid.

This is a localization map by LinearMap.toKerLocalized_isLocalizedModule.

Equations
theorem LinearMap.toKerLocalized_isLocalizedModule {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

The canonical map to the kernel of the localization of g is localizing. In other words, localization commutes with kernels.