noncomputable def
LinearEquiv.extendScalarsOfIsLocalization
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommSemiring R]
(S : Submonoid R)
(A : Type u_4)
[CommSemiring A]
[Algebra R A]
[IsLocalization S A]
[AddCommMonoid M]
[Module R M]
[Module A M]
[IsScalarTower R A M]
[AddCommMonoid N]
[Module R N]
[Module A N]
[IsScalarTower R A N]
(f : M ≃ₗ[R] N)
:
Equations
Instances For
noncomputable def
submodule_localization_equiv
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
(N : Submodule R M)
(S : Submonoid R)
:
↥(Submodule.localized S N) ≃ₗ[Localization S] LocalizedModule S ↥N
Equations
Instances For
theorem
submodule.of_localizationSpan_finite
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
(N : Submodule R M)
(s : Finset R)
(spn : Ideal.span ↑s = ⊤)
(H : ∀ (g : { x : R // x ∈ s }), (Submodule.localized (Submonoid.powers ↑g) N).FG)
:
N.FG
theorem
finitepresented_of_localization_fintespan
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
(s : Finset R)
(spn : Ideal.span ↑s = ⊤)
(h : ∀ (r : { x : R // x ∈ s }), Module.FinitePresentation (Localization.Away ↑r) (LocalizedModule.Away (↑r) M))
:
theorem
isNoetherian_of_localization_finitespan
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
(s : Finset R)
(spn : Ideal.span ↑s = ⊤)
(h : ∀ (r : { x : R // x ∈ s }), IsNoetherian (Localization.Away ↑r) (LocalizedModule.Away (↑r) M))
:
IsNoetherian R M
theorem
isNoetherianRing_of_localization_finitespan
{R : Type u_1}
[CommRing R]
(s : Finset R)
(spn : Ideal.span ↑s = ⊤)
(h : ∀ (r : { x : R // x ∈ s }), IsNoetherianRing (Localization.Away ↑r))
:
theorem
Submodule.localized'_of_finite
{R : Type u_1}
{M : Type u_2}
{S_M : Type u_3}
(S_R : Type u_4)
[CommRing R]
[CommRing S_R]
[Algebra R S_R]
[AddCommGroup M]
[Module R M]
[AddCommGroup S_M]
[Module R S_M]
[Module S_R S_M]
[IsScalarTower R S_R S_M]
(S : Submonoid R)
[IsLocalization S S_R]
(f : M →ₗ[R] S_M)
[IsLocalizedModule S f]
{p : Submodule R M}
(h : p.FG)
:
(Submodule.localized' S_R S f p).FG
theorem
Submodule.localized_of_finite
{R : Type u_1}
{M : Type u_2}
[CommRing R]
[AddCommGroup M]
[Module R M]
(S : Submonoid R)
{p : Submodule R M}
(h : p.FG)
:
(Submodule.localized S p).FG