Lemmas about powers in ordered fields. #
Integer powers #
theorem
zpow_le_one_of_nonpos
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : n ≤ 0)
:
theorem
one_le_zpow_of_nonneg
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : 0 ≤ n)
:
theorem
Nat.zpow_ne_zero_of_pos
{α : Type u_1}
[LinearOrderedSemifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ)
:
theorem
zpow_strictMono
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(hx : 1 < a)
:
StrictMono fun (x : ℤ) => a ^ x
theorem
zpow_strictAnti
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a < 1)
:
StrictAnti fun (x : ℤ) => a ^ x
theorem
GCongr.zpow_lt_of_lt
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{m : ℤ}
{n : ℤ}
(hx : 1 < a)
:
Alias of the reverse direction of zpow_lt_iff_lt
.
@[deprecated GCongr.zpow_lt_of_lt]
theorem
zpow_lt_of_lt
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{m : ℤ}
{n : ℤ}
(hx : 1 < a)
:
Alias of the reverse direction of zpow_lt_iff_lt
.
Alias of the reverse direction of zpow_lt_iff_lt
.
@[simp]
theorem
div_pow_le
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
{b : α}
(ha : 0 ≤ a)
(hb : 1 ≤ b)
(k : ℕ)
:
theorem
zpow_injective
{α : Type u_1}
[LinearOrderedSemifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a ≠ 1)
:
Function.Injective fun (x : ℤ) => a ^ x
theorem
Even.zpow_pos
{α : Type u_1}
[LinearOrderedField α]
{a : α}
{n : ℤ}
(hn : Even n)
(ha : a ≠ 0)
:
Alias of the reverse direction of Odd.zpow_neg_iff
.
Alias of the reverse direction of Odd.zpow_nonpos_iff
.
Bernoulli's inequality #
For any a > 1
and a natural n
we have n ≤ a ^ n / (a - 1)
. See also
Nat.cast_le_pow_sub_div_sub
for a stronger inequality with a ^ n - 1
in the numerator.
The positivity
extension which identifies expressions of the form a ^ (b : ℤ)
,
such that positivity
successfully recognises both a
and b
.
Equations
- One or more equations did not get rendered due to their size.