Lemmas about commuting elements in a MonoidWithZero
or a GroupWithZero
. #
theorem
Ring.mul_inverse_rev'
{M₀ : Type u_1}
[MonoidWithZero M₀]
{a : M₀}
{b : M₀}
(h : Commute a b)
:
Ring.inverse (a * b) = Ring.inverse b * Ring.inverse a
theorem
Ring.mul_inverse_rev
{M₀ : Type u_3}
[CommMonoidWithZero M₀]
(a : M₀)
(b : M₀)
:
Ring.inverse (a * b) = Ring.inverse b * Ring.inverse a
theorem
Ring.inverse_pow
{M₀ : Type u_1}
[MonoidWithZero M₀]
(r : M₀)
(n : ℕ)
:
Ring.inverse r ^ n = Ring.inverse (r ^ n)
theorem
Commute.ring_inverse_ring_inverse
{M₀ : Type u_1}
[MonoidWithZero M₀]
{a : M₀}
{b : M₀}
(h : Commute a b)
:
Commute (Ring.inverse a) (Ring.inverse b)
@[simp]
@[simp]
@[simp]
theorem
Commute.div_right
{G₀ : Type u_2}
[GroupWithZero G₀]
{a : G₀}
{b : G₀}
{c : G₀}
(hab : Commute a b)
(hac : Commute a c)
:
@[simp]
theorem
Commute.div_left
{G₀ : Type u_2}
[GroupWithZero G₀]
{a : G₀}
{b : G₀}
{c : G₀}
(hac : Commute a c)
(hbc : Commute b c)
: