Documentation

Mathlib.Algebra.Order.Ring.Pow

Bernoulli's inequality #

theorem one_add_mul_le_pow' {R : Type u_1} [OrderedSemiring R] {a : R} (Hsq : 0 a * a) (Hsq' : 0 (1 + a) * (1 + a)) (H : 0 2 + a) (n : ) :
1 + n * a (1 + a) ^ n

Bernoulli's inequality. This version works for semirings but requires additional hypotheses 0 ≤ a * a and 0 ≤ (1 + a) * (1 + a).

theorem one_add_mul_le_pow {R : Type u_1} [LinearOrderedRing R] {a : R} (H : -2 a) (n : ) :
1 + n * a (1 + a) ^ n

Bernoulli's inequality for n : ℕ, -2 ≤ a.

theorem one_add_mul_sub_le_pow {R : Type u_1} [LinearOrderedRing R] {a : R} (H : -1 a) (n : ) :
1 + n * (a - 1) a ^ n

Bernoulli's inequality reformulated to estimate a^n.