Documentation

Mathlib.Algebra.NoZeroSMulDivisors.Basic

NoZeroSMulDivisors #

This file defines the NoZeroSMulDivisors class, and includes some tests for the vanishing of elements (especially in modules over division rings).

theorem two_nsmul_eq_zero (R : Type u_3) (M : Type u_4) [Semiring R] [CharZero R] [AddCommMonoid M] [Module R M] [NoZeroSMulDivisors R M] {v : M} :
2 v = 0 v = 0
theorem CharZero.of_module (R : Type u_1) [Semiring R] (M : Type u_3) [AddCommMonoidWithOne M] [CharZero M] [Module R M] :

If M is an R-module with one and M has characteristic zero, then R has characteristic zero as well. Usually M is an R-algebra.

theorem smul_right_injective {R : Type u_1} (M : Type u_2) [Semiring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {c : R} (hc : c 0) :
Function.Injective fun (x : M) => c x
theorem smul_right_inj {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {c : R} (hc : c 0) {x : M} {y : M} :
c x = c y x = y
theorem self_eq_neg (R : Type u_3) (M : Type u_4) [Semiring R] [CharZero R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : M} :
v = -v v = 0
theorem neg_eq_self (R : Type u_3) (M : Type u_4) [Semiring R] [CharZero R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : M} :
-v = v v = 0
theorem self_ne_neg (R : Type u_3) (M : Type u_4) [Semiring R] [CharZero R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : M} :
v -v v 0
theorem neg_ne_self (R : Type u_3) (M : Type u_4) [Semiring R] [CharZero R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : M} :
-v v v 0
theorem smul_left_injective (R : Type u_1) {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {x : M} (hx : x 0) :
Function.Injective fun (c : R) => c x

Only a ring of characteristic zero can have a non-trivial module without additive or scalar torsion.

@[instance 100]

This instance applies to DivisionSemirings, in particular NNReal and NNRat.

Equations
  • =