Documentation

Mathlib.Algebra.GroupWithZero.Action.Units

Multiplicative actions with zero on and by #

This file provides the multiplicative actions with zero of a unit on a type α, SMul Mˣ α, in the presence of SMulWithZero M α, with the obvious definition stated in Units.smul_def.

Additionally, a MulDistribMulAction G M for some group G satisfying some additional properties admits a MulDistribMulAction G Mˣ structure, again with the obvious definition stated in Units.coe_smul. This instance uses a primed name.

See also #

@[simp]
theorem inv_smul_smul₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (x : β) :
a⁻¹ a x = x
@[simp]
theorem smul_inv_smul₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (x : β) :
a a⁻¹ x = x
theorem inv_smul_eq_iff₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) {x : β} {y : β} :
a⁻¹ x = y x = a y
theorem eq_inv_smul_iff₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) {x : β} {y : β} :
x = a⁻¹ y a x = y
@[simp]
theorem Commute.smul_right_iff₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {x : β} {y : β} (ha : a 0) :
Commute x (a y) Commute x y
@[simp]
theorem Commute.smul_left_iff₀ {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {x : β} {y : β} (ha : a 0) :
Commute (a x) y Commute x y
@[simp]
theorem Equiv.smulRight_symm_apply {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (b : β) :
(Equiv.smulRight ha).symm b = a⁻¹ b
@[simp]
theorem Equiv.smulRight_apply {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) (b : β) :
(Equiv.smulRight ha) b = a b
def Equiv.smulRight {α : Type u_3} {β : Type u_4} [GroupWithZero α] [MulAction α β] {a : α} (ha : a 0) :
β β

Right scalar multiplication as an order isomorphism.

Equations
Instances For

    Action of the units of M on a type α #

    instance AddUnits.instVAdd_1 {M : Type u_2} {α : Type u_3} [AddMonoid M] [VAdd M α] :
    VAdd (AddUnits M) α
    Equations
    • AddUnits.instVAdd_1 = { vadd := fun (m : AddUnits M) (a : α) => m +ᵥ a }
    instance Units.instSMul_1 {M : Type u_2} {α : Type u_3} [Monoid M] [SMul M α] :
    SMul Mˣ α
    Equations
    • Units.instSMul_1 = { smul := fun (m : Mˣ) (a : α) => m a }
    instance Units.instSMulZeroClass {M : Type u_2} {α : Type u_3} [Monoid M] [Zero α] [SMulZeroClass M α] :
    Equations
    instance Units.instDistribSMulUnits {M : Type u_2} {α : Type u_3} [Monoid M] [AddZeroClass α] [DistribSMul M α] :
    Equations
    instance Units.instDistribMulAction {M : Type u_2} {α : Type u_3} [Monoid M] [AddMonoid α] [DistribMulAction M α] :
    Equations
    Equations

    Action of a group G on units of M #

    A stronger form of Units.mul_action'.

    Equations
    @[simp]
    theorem IsUnit.smul_eq_zero {G : Type u_1} {M : Type u_2} [Monoid G] [AddMonoid M] [DistribMulAction G M] {u : G} {x : M} (hu : IsUnit u) :
    u x = 0 x = 0