Documentation

Mathlib.Data.Nat.Cast.Defs

Cast of natural numbers #

This file defines the canonical homomorphism from the natural numbers into an AddMonoid with a one. In additive monoids with one, there exists a unique such homomorphism and we store it in the natCast : ℕ → R field.

Preferentially, the homomorphism is written as the coercion Nat.cast.

Main declarations #

def Nat.unaryCast {R : Type u_1} [One R] [Zero R] [Add R] :
R

The numeral ((0+1)+⋯)+1.

Equations
class Nat.AtLeastTwo (n : ) :

A type class for natural numbers which are greater than or equal to 2.

Instances
    theorem Nat.AtLeastTwo.prop {n : } [self : n.AtLeastTwo] :
    n 2
    instance instNatAtLeastTwo {n : } :
    (n + 2).AtLeastTwo
    Equations
    • =
    theorem Nat.AtLeastTwo.one_lt {n : } [n.AtLeastTwo] :
    1 < n
    theorem Nat.AtLeastTwo.ne_one {n : } [n.AtLeastTwo] :
    n 1
    @[instance 100]
    instance instOfNatAtLeastTwo {R : Type u_1} {n : } [NatCast R] [n.AtLeastTwo] :
    OfNat R n

    Recognize numeric literals which are at least 2 as terms of R via Nat.cast. This instance is what makes things like 37 : R type check. Note that 0 and 1 are not needed because they are recognized as terms of R (at least when R is an AddMonoidWithOne) through Zero and One, respectively.

    Equations
    • instOfNatAtLeastTwo = { ofNat := n }
    @[simp]
    theorem Nat.cast_ofNat {R : Type u_1} {n : } [NatCast R] [n.AtLeastTwo] :
    theorem Nat.cast_eq_ofNat {R : Type u_1} {n : } [NatCast R] [n.AtLeastTwo] :
    n = OfNat.ofNat n

    Additive monoids with one #

    class AddMonoidWithOne (R : Type u_2) extends NatCast , AddMonoid , One :
    Type u_2

    An AddMonoidWithOne is an AddMonoid with a 1. It also contains data for the unique homomorphism ℕ → R.

    Instances

      The canonical map ℕ → R sends 0 : ℕ to 0 : R.

      The canonical map ℕ → R is a homomorphism.

      class AddCommMonoidWithOne (R : Type u_2) extends AddMonoidWithOne :
      Type u_2

      An AddCommMonoidWithOne is an AddMonoidWithOne satisfying a + b = b + a.

      Instances
        @[simp]
        theorem Nat.cast_zero {R : Type u_1} [AddMonoidWithOne R] :
        0 = 0
        theorem Nat.cast_succ {R : Type u_1} [AddMonoidWithOne R] (n : ) :
        n.succ = n + 1
        theorem Nat.cast_add_one {R : Type u_1} [AddMonoidWithOne R] (n : ) :
        (n + 1) = n + 1
        @[simp]
        theorem Nat.cast_ite {R : Type u_1} [AddMonoidWithOne R] (P : Prop) [Decidable P] (m : ) (n : ) :
        (if P then m else n) = if P then m else n
        @[simp]
        theorem Nat.cast_one {R : Type u_1} [AddMonoidWithOne R] :
        1 = 1
        @[simp]
        theorem Nat.cast_add {R : Type u_1} [AddMonoidWithOne R] (m : ) (n : ) :
        (m + n) = m + n
        @[irreducible]
        def Nat.binCast {R : Type u_1} [Zero R] [One R] [Add R] :
        R

        Computationally friendlier cast than Nat.unaryCast, using binary representation.

        Equations
        • Nat.binCast 0 = 0
        • n.succ.binCast = if (n + 1) % 2 = 0 then ((n + 1) / 2).binCast + ((n + 1) / 2).binCast else ((n + 1) / 2).binCast + ((n + 1) / 2).binCast + 1
        @[simp]
        theorem Nat.binCast_eq {R : Type u_1} [AddMonoidWithOne R] (n : ) :
        n.binCast = n
        theorem Nat.cast_two {R : Type u_1} [AddMonoidWithOne R] :
        2 = 2
        @[reducible, inline]

        AddMonoidWithOne implementation using unary recursion.

        Equations
        @[reducible, inline]

        AddMonoidWithOne implementation using binary recursion.

        Equations
        theorem one_add_one_eq_two {R : Type u_1} [AddMonoidWithOne R] :
        1 + 1 = 2
        theorem two_add_one_eq_three {R : Type u_1} [AddMonoidWithOne R] :
        2 + 1 = 3
        theorem three_add_one_eq_four {R : Type u_1} [AddMonoidWithOne R] :
        3 + 1 = 4
        theorem two_add_two_eq_four {R : Type u_1} [AddMonoidWithOne R] :
        2 + 2 = 4