Documentation

ModuleLocalProperties.MissingLemmas.Submodule

theorem IsLocalizedModule.mk'_right_smul_mk' {R : Type u_1} {M : Type u_2} {S_M : Type u_3} (S_R : Type u_4) [CommSemiring R] [CommSemiring S_R] [Algebra R S_R] [AddCommMonoid M] [Module R M] [AddCommMonoid S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] (m : M) (s : S) (t : S) :
theorem IsLocalizedModule.mk'_right_smul_mk'_left {R : Type u_1} {M : Type u_2} {S_M : Type u_3} (S_R : Type u_4) [CommSemiring R] [CommSemiring S_R] [Algebra R S_R] [AddCommMonoid M] [Module R M] [AddCommMonoid S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] (m : M) (s : S) :
theorem Submodule.localized'_comap_eq {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] (S_p : Submodule S_R S_M) :
theorem Submodule.localized'_mono {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] {p : Submodule R M} {q : Submodule R M} :
p qSubmodule.localized' S_R S f p Submodule.localized' S_R S f q
def Submodule.localized'OrderEmbedding {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] :
Equations
Instances For
    theorem Submodule.localized'_of_trivial {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] {p : Submodule R M} (h : 0 S) :
    theorem Submodule.localized'_sup {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] {p : Submodule R M} {q : Submodule R M} :
    theorem Submodule.localized'_inf {R : Type u_5} {M : Type u_6} {S_M : Type u_7} (S_R : Type u_8) [CommRing R] [CommRing S_R] [Algebra R S_R] [AddCommGroup M] [Module R M] [AddCommGroup S_M] [Module R S_M] [Module S_R S_M] [IsScalarTower R S_R S_M] (S : Submonoid R) [IsLocalization S S_R] (f : M →ₗ[R] S_M) [IsLocalizedModule S f] {p : Submodule R M} {q : Submodule R M} :
    theorem Submodule.localized_of_trivial {R : Type u_5} {M : Type u_6} [CommRing R] [AddCommGroup M] [Module R M] (S : Submonoid R) {p : Submodule R M} (h : 0 S) :