Documentation

Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.ShiftLeft

This module contains the implementation of a bitblaster for BitVec.shiftLeft. It distinguishes two cases:

  1. Shifting by a constant distance (trivial)
  2. Shifting by a symbolic BitVec distance (requires symbolic branches over the distance).
def Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst {α : Type} [Hashable α] [DecidableEq α] {w : Nat} (aig : Std.Sat.AIG α) (target : aig.ShiftTarget w) :
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[irreducible]
    def Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go {α : Type} [Hashable α] [DecidableEq α] {w : Nat} (aig : Std.Sat.AIG α) (input : aig.RefVec w) (distance : Nat) (curr : Nat) (hcurr : curr w) (s : aig.RefVec curr) :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[irreducible]
      theorem Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go_le_size {α : Type} [Hashable α] [DecidableEq α] {w : Nat} (aig : Std.Sat.AIG α) (distance : Nat) (input : aig.RefVec w) (curr : Nat) (hcurr : curr w) (s : aig.RefVec curr) :
      aig.decls.size (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go aig input distance curr hcurr s).aig.decls.size
      @[irreducible]
      theorem Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go_decl_eq {α : Type} [Hashable α] [DecidableEq α] {w : Nat} (aig : Std.Sat.AIG α) (distance : Nat) (input : aig.RefVec w) (curr : Nat) (hcurr : curr w) (s : aig.RefVec curr) (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go aig input distance curr hcurr s).aig.decls.size) :
      (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go aig input distance curr hcurr s).aig.decls[idx] = aig.decls[idx]
      instance Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorShiftTargetBlastShiftLeftConst {α : Type} [Hashable α] [DecidableEq α] :
      Std.Sat.AIG.LawfulVecOperator α Std.Sat.AIG.ShiftTarget fun {len : Nat} => Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst
      Equations
      • Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorShiftTargetBlastShiftLeftConst = { le_size := , decl_eq := }
      • n : Nat
      • lhs : aig.RefVec w
      • rhs : aig.RefVec self.n
      • pow : Nat
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          instance Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.instLawfulVecOperatorTwoPowShiftTargetTwoPowShift {α : Type} [Hashable α] [DecidableEq α] :
          Std.Sat.AIG.LawfulVecOperator α Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.TwoPowShiftTarget fun {len : Nat} => Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.twoPowShift
          Equations
          • Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.instLawfulVecOperatorTwoPowShiftTargetTwoPowShift = { le_size := , decl_eq := }
          def Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft {α : Type} [Hashable α] [DecidableEq α] {w : Nat} (aig : Std.Sat.AIG α) (target : aig.ArbitraryShiftTarget w) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[irreducible]
            def Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go {α : Type} [Hashable α] [DecidableEq α] {w : Nat} {n : Nat} (aig : Std.Sat.AIG α) (distance : aig.RefVec n) (curr : Nat) (acc : aig.RefVec w) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[irreducible]
              theorem Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go_le_size {α : Type} [Hashable α] [DecidableEq α] {n : Nat} {w : Nat} (aig : Std.Sat.AIG α) (distance : aig.RefVec n) (curr : Nat) (acc : aig.RefVec w) :
              aig.decls.size (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go aig distance curr acc).aig.decls.size
              @[irreducible]
              theorem Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go_decl_eq {α : Type} [Hashable α] [DecidableEq α] {n : Nat} {w : Nat} (aig : Std.Sat.AIG α) (distance : aig.RefVec n) (curr : Nat) (acc : aig.RefVec w) (idx : Nat) (h1 : idx < aig.decls.size) (h2 : idx < (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go aig distance curr acc).aig.decls.size) :
              (Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft.go aig distance curr acc).aig.decls[idx] = aig.decls[idx]
              instance Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorArbitraryShiftTargetBlastShiftLeft {α : Type} [Hashable α] [DecidableEq α] :
              Std.Sat.AIG.LawfulVecOperator α Std.Sat.AIG.ArbitraryShiftTarget fun {len : Nat} => Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeft
              Equations
              • Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorArbitraryShiftTargetBlastShiftLeft = { le_size := , decl_eq := }