Topological properties of ℝ #
Equations
Equations
Equations
theorem
Real.isTopologicalBasis_Ioo_rat :
TopologicalSpace.IsTopologicalBasis (⋃ (a : ℚ), ⋃ (b : ℚ), ⋃ (_ : a < b), {Set.Ioo ↑a ↑b})
@[deprecated cocompact_eq_atBot_atTop]
theorem
Real.cocompact_eq
{α : Type u_2}
[LinearOrder α]
[TopologicalSpace α]
[NoMaxOrder α]
[NoMinOrder α]
[OrderClosedTopology α]
[CompactIccSpace α]
:
Filter.cocompact α = Filter.atBot ⊔ Filter.atTop
Alias of cocompact_eq_atBot_atTop
.
@[deprecated atBot_le_cocompact]
theorem
Real.atBot_le_cocompact
{α : Type u_2}
[LinearOrder α]
[TopologicalSpace α]
[NoMinOrder α]
[ClosedIicTopology α]
:
Filter.atBot ≤ Filter.cocompact α
Alias of atBot_le_cocompact
.
@[deprecated atTop_le_cocompact]
theorem
Real.atTop_le_cocompact
{α : Type u_2}
[LinearOrder α]
[TopologicalSpace α]
[NoMaxOrder α]
[ClosedIciTopology α]
:
Filter.atTop ≤ Filter.cocompact α
Alias of atTop_le_cocompact
.
theorem
Real.uniformContinuous_inv
(s : Set ℝ)
{r : ℝ}
(r0 : 0 < r)
(H : ∀ x ∈ s, r ≤ |x|)
:
UniformContinuous fun (p : ↑s) => (↑p)⁻¹
theorem
Function.Periodic.compact_of_continuous
{α : Type u}
[TopologicalSpace α]
{f : ℝ → α}
{c : ℝ}
(hp : Function.Periodic f c)
(hc : c ≠ 0)
(hf : Continuous f)
:
A continuous, periodic function has compact range.
theorem
Function.Periodic.isBounded_of_continuous
{α : Type u}
[PseudoMetricSpace α]
{f : ℝ → α}
{c : ℝ}
(hp : Function.Periodic f c)
(hc : c ≠ 0)
(hf : Continuous f)
:
A continuous, periodic function is bounded.