Documentation

Mathlib.Topology.Instances.Int

Topology on the integers #

The structure of a metric space on is introduced in this file, induced from .

Equations
theorem Int.dist_eq (x : ) (y : ) :
dist x y = |x - y|
theorem Int.dist_eq' (m : ) (n : ) :
dist m n = |m - n|
@[simp]
theorem Int.dist_cast_real (x : ) (y : ) :
dist x y = dist x y
theorem Int.pairwise_one_le_dist :
Pairwise fun (m n : ) => 1 dist m n
@[deprecated Int.isUniformEmbedding_coe_real]

Alias of Int.isUniformEmbedding_coe_real.

@[deprecated Int.isClosedEmbedding_coe_real]

Alias of Int.isClosedEmbedding_coe_real.

theorem Int.preimage_ball (x : ) (r : ) :
Int.cast ⁻¹' Metric.ball (↑x) r = Metric.ball x r
theorem Int.ball_eq_Ioo (x : ) (r : ) :
Metric.ball x r = Set.Ioo x - r x + r
@[simp]
theorem Int.cobounded_eq :
Bornology.cobounded = Filter.atBot Filter.atTop
@[deprecated cocompact_eq_atBot_atTop]
theorem Int.cocompact_eq {α : Type u_2} [LinearOrder α] [TopologicalSpace α] [NoMaxOrder α] [NoMinOrder α] [OrderClosedTopology α] [CompactIccSpace α] :
Filter.cocompact α = Filter.atBot Filter.atTop

Alias of cocompact_eq_atBot_atTop.

@[simp]
theorem Int.cofinite_eq :
Filter.cofinite = Filter.atBot Filter.atTop