Documentation

Mathlib.RingTheory.LocalRing.Basic

Local rings #

We prove basic properties of local rings.

theorem LocalRing.of_isUnit_or_isUnit_of_isUnit_add {R : Type u_1} [CommSemiring R] [Nontrivial R] (h : ∀ (a b : R), IsUnit (a + b)IsUnit a IsUnit b) :
theorem LocalRing.of_nonunits_add {R : Type u_1} [CommSemiring R] [Nontrivial R] (h : ∀ (a b : R), a nonunits Rb nonunits Ra + b nonunits R) :

A semiring is local if it is nontrivial and the set of nonunits is closed under the addition.

theorem LocalRing.of_unique_max_ideal {R : Type u_1} [CommSemiring R] (h : ∃! I : Ideal R, I.IsMaximal) :

A semiring is local if it has a unique maximal ideal.

theorem LocalRing.of_unique_nonzero_prime {R : Type u_1} [CommSemiring R] (h : ∃! P : Ideal R, P P.IsPrime) :
theorem LocalRing.isUnit_or_isUnit_of_isUnit_add {R : Type u_1} [CommSemiring R] [LocalRing R] {a : R} {b : R} (h : IsUnit (a + b)) :
theorem LocalRing.nonunits_add {R : Type u_1} [CommSemiring R] [LocalRing R] {a : R} {b : R} (ha : a nonunits R) (hb : b nonunits R) :
a + b nonunits R
theorem LocalRing.of_isUnit_or_isUnit_one_sub_self {R : Type u_1} [CommRing R] [Nontrivial R] (h : ∀ (a : R), IsUnit a IsUnit (1 - a)) :
theorem LocalRing.of_surjective' {R : Type u_1} {S : Type u_2} [CommRing R] [LocalRing R] [CommRing S] [Nontrivial S] (f : R →+* S) (hf : Function.Surjective f) :
@[instance 100]
instance Field.instLocalRing (K : Type u_3) [Field K] :
Equations
  • =