Primary ideals #
A proper ideal I
is primary iff xy ∈ I
implies x ∈ I
or y ∈ radical I
.
Main definitions #
Implementation details #
Uses a specialized phrasing of Submodule.IsPrimary
to have better API-piercing usage.
@[reducible, inline]
A proper ideal I
is primary as a submodule.
Equations
- I.IsPrimary = Submodule.IsPrimary I
Instances For
theorem
Ideal.IsPrime.isPrimary
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : I.IsPrime)
:
I.IsPrimary
theorem
Ideal.isPrime_radical
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : I.IsPrimary)
:
I.radical.IsPrime
theorem
Ideal.isPrimary_inf
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
{J : Ideal R}
(hi : I.IsPrimary)
(hj : J.IsPrimary)
(hij : I.radical = J.radical)
:
(I ⊓ J).IsPrimary