Products of lists of prime elements. #
This file contains some theorems relating Prime
and products of List
s.
theorem
Prime.dvd_prod_iff
{M : Type u_1}
[CommMonoidWithZero M]
{p : M}
{L : List M}
(pp : Prime p)
:
Prime p
divides the product of a list L
iff it divides some a ∈ L
theorem
Prime.not_dvd_prod
{M : Type u_1}
[CommMonoidWithZero M]
{p : M}
{L : List M}
(pp : Prime p)
(hL : ∀ a ∈ L, ¬p ∣ a)
:
theorem
mem_list_primes_of_dvd_prod
{M : Type u_1}
[CancelCommMonoidWithZero M]
[Subsingleton Mˣ]
{p : M}
(hp : Prime p)
{L : List M}
(hL : ∀ q ∈ L, Prime q)
(hpL : p ∣ L.prod)
:
p ∈ L
theorem
perm_of_prod_eq_prod
{M : Type u_1}
[CancelCommMonoidWithZero M]
[Subsingleton Mˣ]
{l₁ : List M}
{l₂ : List M}
: