Documentation

Mathlib.Data.List.Join

Join of a list of lists #

This file proves basic properties of List.join, which concatenates a list of lists. It is defined in Init.Data.List.Basic.

@[deprecated List.join_filter_not_isEmpty]
theorem List.join_filter_isEmpty_eq_false {α : Type u_1} {L : List (List α)} :
(List.filter (fun (l : List α) => !l.isEmpty) L).join = L.join

Alias of List.join_filter_not_isEmpty.

theorem List.length_join' {α : Type u_1} (L : List (List α)) :
L.join.length = Nat.sum (List.map List.length L)

See List.length_join for the corresponding statement using List.sum.

theorem List.countP_join' {α : Type u_1} (p : αBool) (L : List (List α)) :

See List.countP_join for the corresponding statement using List.sum.

theorem List.count_join' {α : Type u_1} [BEq α] (L : List (List α)) (a : α) :

See List.count_join for the corresponding statement using List.sum.

theorem List.length_bind' {α : Type u_1} {β : Type u_2} (l : List α) (f : αList β) :
(l.bind f).length = Nat.sum (List.map (List.length f) l)

See List.length_bind for the corresponding statement using List.sum.

theorem List.countP_bind' {α : Type u_1} {β : Type u_2} (p : βBool) (l : List α) (f : αList β) :
List.countP p (l.bind f) = Nat.sum (List.map (List.countP p f) l)

See List.countP_bind for the corresponding statement using List.sum.

theorem List.count_bind' {α : Type u_1} {β : Type u_2} [BEq β] (l : List α) (f : αList β) (x : β) :
List.count x (l.bind f) = Nat.sum (List.map (List.count x f) l)

See List.count_bind for the corresponding statement using List.sum.

theorem List.take_sum_join' {α : Type u_1} (L : List (List α)) (i : ) :
List.take (Nat.sum (List.take i (List.map List.length L))) L.join = (List.take i L).join

In a join, taking the first elements up to an index which is the sum of the lengths of the first i sublists, is the same as taking the join of the first i sublists.

See List.take_sum_join for the corresponding statement using List.sum.

theorem List.drop_sum_join' {α : Type u_1} (L : List (List α)) (i : ) :
List.drop (Nat.sum (List.take i (List.map List.length L))) L.join = (List.drop i L).join

In a join, dropping all the elements up to an index which is the sum of the lengths of the first i sublists, is the same as taking the join after dropping the first i sublists.

See List.drop_sum_join for the corresponding statement using List.sum.

theorem List.drop_take_succ_eq_cons_getElem {α : Type u_1} (L : List α) (i : ) (h : i < L.length) :
List.drop i (List.take (i + 1) L) = [L[i]]

Taking only the first i+1 elements in a list, and then dropping the first i ones, one is left with a list of length 1 made of the i-th element of the original list.

@[deprecated List.drop_take_succ_eq_cons_getElem]
theorem List.drop_take_succ_eq_cons_get {α : Type u_1} (L : List α) (i : Fin L.length) :
List.drop (↑i) (List.take (i + 1) L) = [L.get i]
theorem List.drop_take_succ_join_eq_getElem' {α : Type u_1} (L : List (List α)) (i : ) (h : i < L.length) :
List.drop (Nat.sum (List.take i (List.map List.length L))) (List.take (Nat.sum (List.take (i + 1) (List.map List.length L))) L.join) = L[i]

In a join of sublists, taking the slice between the indices A and B - 1 gives back the original sublist of index i if A is the sum of the lengths of sublists of index < i, and B is the sum of the lengths of sublists of index ≤ i.

See List.drop_take_succ_join_eq_getElem for the corresponding statement using List.sum.

@[deprecated List.drop_take_succ_join_eq_getElem']
theorem List.drop_take_succ_join_eq_get' {α : Type u_1} (L : List (List α)) (i : Fin L.length) :
List.drop (Nat.sum (List.take (↑i) (List.map List.length L))) (List.take (Nat.sum (List.take (i + 1) (List.map List.length L))) L.join) = L.get i
theorem List.join_drop_length_sub_one {α : Type u_1} {L : List (List α)} (h : L []) :
(List.drop (L.length - 1) L).join = L.getLast h
theorem List.append_join_map_append {α : Type u_1} (L : List (List α)) (x : List α) :
x ++ (List.map (fun (x_1 : List α) => x_1 ++ x) L).join = (List.map (fun (x_1 : List α) => x ++ x_1) L).join ++ x

We can rebracket x ++ (l₁ ++ x) ++ (l₂ ++ x) ++ ... ++ (lₙ ++ x) to (x ++ l₁) ++ (x ++ l₂) ++ ... ++ (x ++ lₙ) ++ x where L = [l₁, l₂, ..., lₙ].

@[deprecated List.sublist_join_of_mem]
theorem List.sublist_join {α : Type u_1} {L : List (List α)} {l : List α} (h : l L) :
l.Sublist L.join

Alias of List.sublist_join_of_mem.