Documentation

Init.Data.List.Count

Lemmas about List.countP and List.count. #

countP #

@[simp]
theorem List.countP_nil {α : Type u_1} (p : αBool) :
List.countP p [] = 0
theorem List.countP_go_eq_add {α : Type u_1} (p : αBool) {n : Nat} (l : List α) :
@[simp]
theorem List.countP_cons_of_pos {α : Type u_1} (p : αBool) {a : α} (l : List α) (pa : p a = true) :
List.countP p (a :: l) = List.countP p l + 1
@[simp]
theorem List.countP_cons_of_neg {α : Type u_1} (p : αBool) {a : α} (l : List α) (pa : ¬p a = true) :
theorem List.countP_cons {α : Type u_1} (p : αBool) (a : α) (l : List α) :
List.countP p (a :: l) = List.countP p l + if p a = true then 1 else 0
theorem List.countP_singleton {α : Type u_1} (p : αBool) (a : α) :
List.countP p [a] = if p a = true then 1 else 0
theorem List.length_eq_countP_add_countP {α : Type u_1} (p : αBool) (l : List α) :
l.length = List.countP p l + List.countP (fun (a : α) => decide ¬p a = true) l
theorem List.countP_eq_length_filter {α : Type u_1} (p : αBool) (l : List α) :
List.countP p l = (List.filter p l).length
theorem List.countP_eq_length_filter' {α : Type u_1} (p : αBool) :
List.countP p = List.length List.filter p
theorem List.countP_le_length {α : Type u_1} (p : αBool) {l : List α} :
List.countP p l l.length
@[simp]
theorem List.countP_append {α : Type u_1} (p : αBool) (l₁ : List α) (l₂ : List α) :
List.countP p (l₁ ++ l₂) = List.countP p l₁ + List.countP p l₂
@[simp]
theorem List.countP_pos_iff :
∀ {α : Type u_1} {l : List α} {p : αBool}, 0 < List.countP p l ∃ (a : α), a l p a = true
@[reducible, inline, deprecated List.countP_pos_iff]
abbrev List.countP_pos :
∀ {α : Type u_1} {l : List α} {p : αBool}, 0 < List.countP p l ∃ (a : α), a l p a = true
Equations
Instances For
    @[simp]
    theorem List.one_le_countP_iff :
    ∀ {α : Type u_1} {l : List α} {p : αBool}, 1 List.countP p l ∃ (a : α), a l p a = true
    @[simp]
    theorem List.countP_eq_zero :
    ∀ {α : Type u_1} {l : List α} {p : αBool}, List.countP p l = 0 ∀ (a : α), a l¬p a = true
    @[simp]
    theorem List.countP_eq_length :
    ∀ {α : Type u_1} {l : List α} {p : αBool}, List.countP p l = l.length ∀ (a : α), a lp a = true
    theorem List.countP_replicate {α : Type u_1} (p : αBool) (a : α) (n : Nat) :
    List.countP p (List.replicate n a) = if p a = true then n else 0
    theorem List.boole_getElem_le_countP {α : Type u_1} (p : αBool) (l : List α) (i : Nat) (h : i < l.length) :
    (if p l[i] = true then 1 else 0) List.countP p l
    theorem List.Sublist.countP_le {α : Type u_1} (p : αBool) {l₁ : List α} {l₂ : List α} (s : l₁.Sublist l₂) :
    theorem List.IsPrefix.countP_le {α : Type u_1} (p : αBool) {l₁ : List α} {l₂ : List α} (s : l₁ <+: l₂) :
    theorem List.IsSuffix.countP_le {α : Type u_1} (p : αBool) {l₁ : List α} {l₂ : List α} (s : l₁ <:+ l₂) :
    theorem List.IsInfix.countP_le {α : Type u_1} (p : αBool) {l₁ : List α} {l₂ : List α} (s : l₁ <:+: l₂) :
    theorem List.countP_tail_le {α : Type u_1} (p : αBool) (l : List α) :
    theorem List.countP_filter {α : Type u_1} (p : αBool) (q : αBool) (l : List α) :
    List.countP p (List.filter q l) = List.countP (fun (a : α) => p a && q a) l
    @[simp]
    theorem List.countP_true {α : Type u_1} :
    (List.countP fun (x : α) => true) = List.length
    @[simp]
    theorem List.countP_false {α : Type u_1} :
    (List.countP fun (x : α) => false) = Function.const (List α) 0
    @[simp]
    theorem List.countP_map {α : Type u_2} {β : Type u_1} (p : βBool) (f : αβ) (l : List α) :
    theorem List.length_filterMap_eq_countP {α : Type u_2} {β : Type u_1} (f : αOption β) (l : List α) :
    (List.filterMap f l).length = List.countP (fun (a : α) => (f a).isSome) l
    theorem List.countP_filterMap {α : Type u_2} {β : Type u_1} (p : βBool) (f : αOption β) (l : List α) :
    List.countP p (List.filterMap f l) = List.countP (fun (a : α) => (Option.map p (f a)).getD false) l
    @[simp]
    theorem List.countP_join {α : Type u_1} (p : αBool) (l : List (List α)) :
    @[simp]
    theorem List.countP_reverse {α : Type u_1} (p : αBool) (l : List α) :
    List.countP p l.reverse = List.countP p l
    theorem List.countP_mono_left {α : Type u_1} {p : αBool} {q : αBool} {l : List α} (h : ∀ (x : α), x lp x = trueq x = true) :
    theorem List.countP_congr {α : Type u_1} {p : αBool} {q : αBool} {l : List α} (h : ∀ (x : α), x l(p x = true q x = true)) :

    count #

    @[simp]
    theorem List.count_nil {α : Type u_1} [BEq α] (a : α) :
    List.count a [] = 0
    theorem List.count_cons {α : Type u_1} [BEq α] (a : α) (b : α) (l : List α) :
    List.count a (b :: l) = List.count a l + if (b == a) = true then 1 else 0
    theorem List.count_eq_countP {α : Type u_1} [BEq α] (a : α) (l : List α) :
    List.count a l = List.countP (fun (x : α) => x == a) l
    theorem List.count_eq_countP' {α : Type u_1} [BEq α] {a : α} :
    List.count a = List.countP fun (x : α) => x == a
    theorem List.count_tail {α : Type u_1} [BEq α] (l : List α) (a : α) (h : l []) :
    List.count a l.tail = List.count a l - if (l.head h == a) = true then 1 else 0
    theorem List.count_le_length {α : Type u_1} [BEq α] (a : α) (l : List α) :
    List.count a l l.length
    theorem List.Sublist.count_le {α : Type u_1} [BEq α] {l₁ : List α} {l₂ : List α} (h : l₁.Sublist l₂) (a : α) :
    List.count a l₁ List.count a l₂
    theorem List.IsPrefix.count_le {α : Type u_1} [BEq α] {l₁ : List α} {l₂ : List α} (h : l₁ <+: l₂) (a : α) :
    List.count a l₁ List.count a l₂
    theorem List.IsSuffix.count_le {α : Type u_1} [BEq α] {l₁ : List α} {l₂ : List α} (h : l₁ <:+ l₂) (a : α) :
    List.count a l₁ List.count a l₂
    theorem List.IsInfix.count_le {α : Type u_1} [BEq α] {l₁ : List α} {l₂ : List α} (h : l₁ <:+: l₂) (a : α) :
    List.count a l₁ List.count a l₂
    theorem List.count_tail_le {α : Type u_1} [BEq α] (a : α) (l : List α) :
    theorem List.count_le_count_cons {α : Type u_1} [BEq α] (a : α) (b : α) (l : List α) :
    theorem List.count_singleton {α : Type u_1} [BEq α] (a : α) (b : α) :
    List.count a [b] = if (b == a) = true then 1 else 0
    @[simp]
    theorem List.count_append {α : Type u_1} [BEq α] (a : α) (l₁ : List α) (l₂ : List α) :
    List.count a (l₁ ++ l₂) = List.count a l₁ + List.count a l₂
    theorem List.count_join {α : Type u_1} [BEq α] (a : α) (l : List (List α)) :
    @[simp]
    theorem List.count_reverse {α : Type u_1} [BEq α] (a : α) (l : List α) :
    List.count a l.reverse = List.count a l
    theorem List.boole_getElem_le_count {α : Type u_1} [BEq α] (a : α) (l : List α) (i : Nat) (h : i < l.length) :
    (if (l[i] == a) = true then 1 else 0) List.count a l
    @[simp]
    theorem List.count_cons_self {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (l : List α) :
    List.count a (a :: l) = List.count a l + 1
    @[simp]
    theorem List.count_cons_of_ne {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {b : α} (h : a b) (l : List α) :
    theorem List.count_singleton_self {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) :
    List.count a [a] = 1
    theorem List.count_concat_self {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (l : List α) :
    List.count a (l.concat a) = List.count a l + 1
    @[simp]
    theorem List.count_pos_iff {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} :
    0 < List.count a l a l
    @[reducible, inline, deprecated List.count_pos_iff]
    abbrev List.count_pos_iff_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} :
    0 < List.count a l a l
    Equations
    Instances For
      @[simp]
      theorem List.one_le_count_iff {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} :
      1 List.count a l a l
      theorem List.count_eq_zero_of_not_mem {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} (h : ¬a l) :
      theorem List.not_mem_of_count_eq_zero {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} (h : List.count a l = 0) :
      ¬a l
      theorem List.count_eq_zero {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} :
      List.count a l = 0 ¬a l
      theorem List.count_eq_length {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} :
      List.count a l = l.length ∀ (b : α), b la = b
      @[simp]
      theorem List.count_replicate_self {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (n : Nat) :
      theorem List.count_replicate {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (b : α) (n : Nat) :
      List.count a (List.replicate n b) = if (b == a) = true then n else 0
      theorem List.filter_beq {α : Type u_1} [BEq α] [LawfulBEq α] (l : List α) (a : α) :
      List.filter (fun (x : α) => x == a) l = List.replicate (List.count a l) a
      theorem List.filter_eq {α : Type u_1} [DecidableEq α] (l : List α) (a : α) :
      List.filter (fun (x : α) => decide (x = a)) l = List.replicate (List.count a l) a
      theorem List.le_count_iff_replicate_sublist {α : Type u_1} [BEq α] [LawfulBEq α] {n : Nat} {a : α} {l : List α} :
      n List.count a l (List.replicate n a).Sublist l
      theorem List.replicate_count_eq_of_count_eq_length {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {l : List α} (h : List.count a l = l.length) :
      @[simp]
      theorem List.count_filter {α : Type u_1} [BEq α] [LawfulBEq α] {p : αBool} {a : α} {l : List α} (h : p a = true) :
      theorem List.count_le_count_map {α : Type u_2} [BEq α] [LawfulBEq α] {β : Type u_1} [DecidableEq β] (l : List α) (f : αβ) (x : α) :
      theorem List.count_filterMap {β : Type u_1} {α : Type u_2} [BEq β] (b : β) (f : αOption β) (l : List α) :
      List.count b (List.filterMap f l) = List.countP (fun (a : α) => f a == some b) l
      theorem List.count_erase {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (b : α) (l : List α) :
      List.count a (l.erase b) = List.count a l - if (b == a) = true then 1 else 0
      @[simp]
      theorem List.count_erase_self {α : Type u_1} [BEq α] [LawfulBEq α] (a : α) (l : List α) :
      List.count a (l.erase a) = List.count a l - 1
      @[simp]
      theorem List.count_erase_of_ne {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {b : α} (ab : a b) (l : List α) :
      List.count a (l.erase b) = List.count a l