Documentation

Mathlib.Algebra.Module.Rat

Basic results about modules over the rationals. #

theorem map_nnratCast_smul {M : Type u_1} {M₂ : Type u_2} [AddCommMonoid M] [AddCommMonoid M₂] {F : Type u_3} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (R : Type u_4) (S : Type u_5) [DivisionSemiring R] [DivisionSemiring S] [Module R M] [Module S M₂] (c : ℚ≥0) (x : M) :
f (c x) = c f x
theorem map_ratCast_smul {M : Type u_1} {M₂ : Type u_2} [AddCommGroup M] [AddCommGroup M₂] {F : Type u_3} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (R : Type u_4) (S : Type u_5) [DivisionRing R] [DivisionRing S] [Module R M] [Module S M₂] (c : ) (x : M) :
f (c x) = c f x
@[deprecated map_ratCast_smul]
theorem map_rat_cast_smul {M : Type u_1} {M₂ : Type u_2} [AddCommGroup M] [AddCommGroup M₂] {F : Type u_3} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (R : Type u_4) (S : Type u_5) [DivisionRing R] [DivisionRing S] [Module R M] [Module S M₂] (c : ) (x : M) :
f (c x) = c f x

Alias of map_ratCast_smul.

theorem map_nnrat_smul {M : Type u_1} {M₂ : Type u_2} [AddCommMonoid M] [AddCommMonoid M₂] [_instM : Module ℚ≥0 M] [_instM₂ : Module ℚ≥0 M₂] {F : Type u_3} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (c : ℚ≥0) (x : M) :
f (c x) = c f x
theorem map_rat_smul {M : Type u_1} {M₂ : Type u_2} [AddCommGroup M] [AddCommGroup M₂] [_instM : Module M] [_instM₂ : Module M₂] {F : Type u_3} [FunLike F M M₂] [AddMonoidHomClass F M M₂] (f : F) (c : ) (x : M) :
f (c x) = c f x

There can be at most one Module ℚ≥0 E structure on an additive commutative monoid.

Equations
  • =

There can be at most one Module ℚ E structure on an additive commutative group.

Equations
  • =
theorem nnratCast_smul_eq {E : Type u_3} (R : Type u_4) (S : Type u_5) [AddCommMonoid E] [DivisionSemiring R] [DivisionSemiring S] [Module R E] [Module S E] (r : ℚ≥0) (x : E) :
r x = r x

If E is a vector space over two division semirings R and S, then scalar multiplications agree on non-negative rational numbers in R and S.

theorem ratCast_smul_eq {E : Type u_3} (R : Type u_4) (S : Type u_5) [AddCommGroup E] [DivisionRing R] [DivisionRing S] [Module R E] [Module S E] (r : ) (x : E) :
r x = r x

If E is a vector space over two division rings R and S, then scalar multiplications agree on rational numbers in R and S.

@[deprecated ratCast_smul_eq]
theorem rat_cast_smul_eq {E : Type u_3} (R : Type u_4) (S : Type u_5) [AddCommGroup E] [DivisionRing R] [DivisionRing S] [Module R E] [Module S E] (r : ) (x : E) :
r x = r x

Alias of ratCast_smul_eq.


If E is a vector space over two division rings R and S, then scalar multiplications agree on rational numbers in R and S.

Equations
  • =
instance IsScalarTower.rat {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] [Module R M] [Module R] [Module M] :
Equations
  • =
Equations
  • =
instance SMulCommClass.rat {α : Type u} {M : Type v} [Monoid α] [AddCommGroup M] [DistribMulAction α M] [Module M] :
Equations
  • =
Equations
  • =
instance SMulCommClass.rat' {α : Type u} {M : Type v} [Monoid α] [AddCommGroup M] [DistribMulAction α M] [Module M] :
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 100]
Equations
  • =