Documentation

Mathlib.Algebra.Module.Injective

Injective modules #

Main definitions #

Main statements #

theorem Module.injective_iff (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :
Module.Injective R Q ∀ ⦃X Y : Type v⦄ [inst : AddCommGroup X] [inst_1 : AddCommGroup Y] [inst_2 : Module R X] [inst_3 : Module R Y] (f : X →ₗ[R] Y), Function.Injective f∀ (g : X →ₗ[R] Q), ∃ (h : Y →ₗ[R] Q), ∀ (x : X), h (f x) = g x
class Module.Injective (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :

An R-module Q is injective if and only if every injective R-linear map descends to a linear map to Q, i.e. in the following diagram, if f is injective then there is an R-linear map h : Y ⟶ Q such that g = h ∘ f

X --- f ---> Y
|
| g
v
Q
Instances
    theorem Module.Injective.out {R : Type u} :
    ∀ {inst : Ring R} {Q : Type v} {inst_1 : AddCommGroup Q} {inst_2 : Module R Q} [self : Module.Injective R Q] ⦃X Y : Type v⦄ [inst_3 : AddCommGroup X] [inst_4 : AddCommGroup Y] [inst_5 : Module R X] [inst_6 : Module R Y] (f : X →ₗ[R] Y), Function.Injective f∀ (g : X →ₗ[R] Q), ∃ (h : Y →ₗ[R] Q), ∀ (x : X), h (f x) = g x
    def Module.Baer (R : Type u) [Ring R] (Q : Type v) [AddCommGroup Q] [Module R Q] :

    An R-module Q satisfies Baer's criterion if any R-linear map from an Ideal R extends to an R-linear map R ⟶ Q

    Equations
    Instances For
      structure Module.Baer.ExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) extends LinearPMap :
      Type (max u_2 v)

      If we view M as a submodule of N via the injective linear map i : M ↪ N, then a submodule between M and N is a submodule N' of N. To prove Baer's criterion, we need to consider pairs of (N', f') such that M ≤ N' ≤ N and f' extends f.

      Instances For
        theorem Module.Baer.ExtensionOf.le {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} (self : Module.Baer.ExtensionOf i f) :
        LinearMap.range i self.domain
        theorem Module.Baer.ExtensionOf.is_extension {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} (self : Module.Baer.ExtensionOf i f) (m : M) :
        f m = self.toLinearPMap i m,
        theorem Module.Baer.ExtensionOf.ext {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {a : Module.Baer.ExtensionOf i f} {b : Module.Baer.ExtensionOf i f} (domain_eq : a.domain = b.domain) (to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, x = ya.toLinearPMap x = b.toLinearPMap y) :
        a = b
        theorem Module.Baer.ExtensionOf.ext_iff {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {a : Module.Baer.ExtensionOf i f} {b : Module.Baer.ExtensionOf i f} :
        a = b ∃ (_ : a.domain = b.domain), ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, x = ya.toLinearPMap x = b.toLinearPMap y
        instance Module.Baer.instInfExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) :
        Equations
        • One or more equations did not get rendered due to their size.
        instance Module.Baer.instSemilatticeInfExtensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) :
        Equations
        theorem Module.Baer.chain_linearPMap_of_chain_extensionOf {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (Module.Baer.ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : Module.Baer.ExtensionOf i f) => x1 x2) c) :
        IsChain (fun (x1 x2 : N →ₗ.[R] Q) => x1 x2) ((fun (x : Module.Baer.ExtensionOf i f) => x.toLinearPMap) '' c)
        def Module.Baer.ExtensionOf.max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (Module.Baer.ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : Module.Baer.ExtensionOf i f) => x1 x2) c) (hnonempty : c.Nonempty) :

        The maximal element of every nonempty chain of extension_of i f.

        Equations
        Instances For
          theorem Module.Baer.ExtensionOf.le_max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {i : M →ₗ[R] N} {f : M →ₗ[R] Q} {c : Set (Module.Baer.ExtensionOf i f)} (hchain : IsChain (fun (x1 x2 : Module.Baer.ExtensionOf i f) => x1 x2) c) (hnonempty : c.Nonempty) (a : Module.Baer.ExtensionOf i f) (ha : a c) :
          a Module.Baer.ExtensionOf.max hchain hnonempty
          instance Module.Baer.ExtensionOf.inhabited {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] :
          Equations
          • One or more equations did not get rendered due to their size.
          def Module.Baer.extensionOfMax {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] :

          Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal extension_of i f.

          Equations
          Instances For
            theorem Module.Baer.extensionOfMax_is_max {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (a : Module.Baer.ExtensionOf i f) :
            @[reducible, inline]
            abbrev Module.Baer.supExtensionOfMaxSingleton {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (y : N) :
            Equations
            Instances For
              def Module.Baer.ExtensionOfMaxAdjoin.fst {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) {f : M →ₗ[R] Q} [Fact (Function.Injective i)] {y : N} (x : (Module.Baer.supExtensionOfMaxSingleton i f y)) :

              If x ∈ M ⊔ ⟨y⟩, then x = m + r • y, fst pick an arbitrary such m.

              Equations
              Instances For
                def Module.Baer.ExtensionOfMaxAdjoin.snd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) {f : M →ₗ[R] Q} [Fact (Function.Injective i)] {y : N} (x : (Module.Baer.supExtensionOfMaxSingleton i f y)) :
                R

                If x ∈ M ⊔ ⟨y⟩, then x = m + r • y, snd pick an arbitrary such r.

                Equations
                Instances For
                  def Module.Baer.ExtensionOfMaxAdjoin.ideal {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (y : N) :

                  The ideal I = {r | r • y ∈ N}

                  Equations
                  Instances For
                    def Module.Baer.ExtensionOfMaxAdjoin.idealTo {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (y : N) :

                    A linear map I ⟶ Q by x ↦ f' (x • y) where f' is the maximal extension

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) (y : N) :

                      Since we assumed Q being Baer, the linear map x ↦ f' (x • y) : I ⟶ Q extends to R ⟶ Q, call this extended map φ

                      Equations
                      Instances For
                        theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd' {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} (r : R) (eq1 : r y = 0) :
                        theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} (r : R) (r' : R) (eq1 : r y = r' y) :
                        theorem Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_eq {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} (r : R) (hr : r y (Module.Baer.extensionOfMax i f).domain) :
                        (Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo i f h y) r = (Module.Baer.extensionOfMax i f).toLinearPMap r y, hr
                        def Module.Baer.ExtensionOfMaxAdjoin.extensionToFun {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} :

                        We can finally define a linear map M ⊔ ⟨y⟩ ⟶ Q by x + r • y ↦ f x + φ r

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem Module.Baer.ExtensionOfMaxAdjoin.extensionToFun_wd {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} (x : (Module.Baer.supExtensionOfMaxSingleton i f y)) (a : (Module.Baer.extensionOfMax i f).domain) (r : R) (eq1 : x = a + r y) :
                          def Module.Baer.extensionOfMaxAdjoin {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) (y : N) :

                          The linear map M ⊔ ⟨y⟩ ⟶ Q by x + r • y ↦ f x + φ r is an extension of f

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem Module.Baer.extensionOfMax_le {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) {y : N} :
                            theorem Module.Baer.extensionOfMax_to_submodule_eq_top {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) [Fact (Function.Injective i)] (h : Module.Baer R Q) :
                            theorem Module.Baer.extension_property {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (h : Module.Baer R Q) (f : M →ₗ[R] N) (hf : Function.Injective f) (g : M →ₗ[R] Q) :
                            ∃ (h : N →ₗ[R] Q), h ∘ₗ f = g
                            theorem Module.Baer.extension_property_addMonoidHom {Q : Type v} [AddCommGroup Q] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [AddCommGroup N] (h : Module.Baer Q) (f : M →+ N) (hf : Function.Injective f) (g : M →+ Q) :
                            ∃ (h : N →+ Q), h.comp f = g
                            theorem Module.Baer.injective {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] (h : Module.Baer R Q) :

                            Baer's criterion for injective module : a Baer module is an injective module, i.e. if every linear map from an ideal can be extended, then the module is injective.

                            theorem Module.Baer.of_injective {R : Type u} [Ring R] {Q : Type v} [AddCommGroup Q] [Module R Q] [Small.{v, u} R] (inj : Module.Injective R Q) :
                            theorem Module.Injective.extension_property (R : Type uR) [Ring R] [Small.{uM, uR} R] (M : Type uM) [AddCommGroup M] [Module R M] [inj : Module.Injective R M] (P : Type uP) [AddCommGroup P] [Module R P] (P' : Type uP') [AddCommGroup P'] [Module R P'] (f : P →ₗ[R] P') (hf : Function.Injective f) (g : P →ₗ[R] M) :
                            ∃ (h : P' →ₗ[R] M), h ∘ₗ f = g