Lemmas about rings of characteristic two #
This file contains results about CharP R 2
, in the CharTwo
namespace.
The lemmas in this file with a _sq
suffix are just special cases of the _pow_char
lemmas
elsewhere, with a shorter name for ease of discovery, and no need for a [Fact (Prime 2)]
argument.
theorem
CharTwo.of_one_ne_zero_of_two_eq_zero
{R : Type u_1}
[AddMonoidWithOne R]
(h₁ : 1 ≠ 0)
(h₂ : 2 = 0)
:
CharP R 2
The only hypotheses required to build a CharP R 2
instance are 1 ≠ 0
and 2 = 0
.
theorem
CharTwo.multiset_sum_sq
{R : Type u_1}
[CommSemiring R]
[CharP R 2]
(l : Multiset R)
:
l.sum ^ 2 = (Multiset.map (fun (x : R) => x ^ 2) l).sum
theorem
CharTwo.multiset_sum_mul_self
{R : Type u_1}
[CommSemiring R]
[CharP R 2]
(l : Multiset R)
:
l.sum * l.sum = (Multiset.map (fun (x : R) => x * x) l).sum
theorem
CharTwo.sum_sq
{R : Type u_1}
{ι : Type u_2}
[CommSemiring R]
[CharP R 2]
(s : Finset ι)
(f : ι → R)
:
theorem
CharTwo.sum_mul_self
{R : Type u_1}
{ι : Type u_2}
[CommSemiring R]
[CharP R 2]
(s : Finset ι)
(f : ι → R)
:
@[simp]