Documentation

Init.Data.Array.Bootstrap

Bootstrapping theorems about arrays #

This file contains some theorems about Array and List needed for Init.Data.List.Impl.

@[irreducible]
theorem Array.foldlM_eq_foldlM_toList.aux {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] (f : βαm β) (arr : Array α) (i : Nat) (j : Nat) (H : arr.size i + j) (b : β) :
Array.foldlM.loop f arr arr.size i j b = List.foldlM f b (List.drop j arr.toList)
theorem Array.foldlM_eq_foldlM_toList {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] (f : βαm β) (init : β) (arr : Array α) :
Array.foldlM f init arr = List.foldlM f init arr.toList
theorem Array.foldl_eq_foldl_toList {β : Type u_1} {α : Type u_2} (f : βαβ) (init : β) (arr : Array α) :
Array.foldl f init arr = List.foldl f init arr.toList
theorem Array.foldrM_eq_reverse_foldlM_toList.aux {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αβm β) (arr : Array α) (init : β) (i : Nat) (h : i arr.size) :
List.foldlM (fun (x : β) (y : α) => f y x) init (List.take i arr.toList).reverse = Array.foldrM.fold f arr 0 i h init
theorem Array.foldrM_eq_reverse_foldlM_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αβm β) (init : β) (arr : Array α) :
Array.foldrM f init arr = List.foldlM (fun (x : β) (y : α) => f y x) init arr.toList.reverse
theorem Array.foldrM_eq_foldrM_toList {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αβm β) (init : β) (arr : Array α) :
Array.foldrM f init arr = List.foldrM f init arr.toList
theorem Array.foldr_eq_foldr_toList {α : Type u_1} {β : Type u_2} (f : αββ) (init : β) (arr : Array α) :
Array.foldr f init arr = List.foldr f init arr.toList
@[simp]
theorem Array.push_toList {α : Type u_1} (arr : Array α) (a : α) :
(arr.push a).toList = arr.toList ++ [a]
@[simp]
theorem Array.toListAppend_eq {α : Type u_1} (arr : Array α) (l : List α) :
arr.toListAppend l = arr.toList ++ l
@[simp]
theorem Array.toListImpl_eq {α : Type u_1} (arr : Array α) :
arr.toListImpl = arr.toList
@[simp]
theorem Array.pop_toList {α : Type u_1} (arr : Array α) :
arr.pop.toList = arr.toList.dropLast
@[simp]
theorem Array.append_eq_append {α : Type u_1} (arr : Array α) (arr' : Array α) :
arr.append arr' = arr ++ arr'
@[simp]
theorem Array.toList_append {α : Type u_1} (arr : Array α) (arr' : Array α) :
(arr ++ arr').toList = arr.toList ++ arr'.toList
@[simp]
theorem Array.appendList_eq_append {α : Type u_1} (arr : Array α) (l : List α) :
arr.appendList l = arr ++ l
@[simp]
theorem Array.appendList_toList {α : Type u_1} (arr : Array α) (l : List α) :
(arr ++ l).toList = arr.toList ++ l
@[reducible, inline, deprecated Array.foldlM_eq_foldlM_toList]
abbrev Array.foldlM_eq_foldlM_data {m : Type u_1 → Type u_2} {β : Type u_1} {α : Type u_3} [Monad m] (f : βαm β) (init : β) (arr : Array α) :
Array.foldlM f init arr = List.foldlM f init arr.toList
Equations
Instances For
    @[reducible, inline, deprecated Array.foldl_eq_foldl_toList]
    abbrev Array.foldl_eq_foldl_data {β : Type u_1} {α : Type u_2} (f : βαβ) (init : β) (arr : Array α) :
    Array.foldl f init arr = List.foldl f init arr.toList
    Equations
    Instances For
      @[reducible, inline, deprecated Array.foldrM_eq_reverse_foldlM_toList]
      abbrev Array.foldrM_eq_reverse_foldlM_data {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αβm β) (init : β) (arr : Array α) :
      Array.foldrM f init arr = List.foldlM (fun (x : β) (y : α) => f y x) init arr.toList.reverse
      Equations
      Instances For
        @[reducible, inline, deprecated Array.foldrM_eq_foldrM_toList]
        abbrev Array.foldrM_eq_foldrM_data {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αβm β) (init : β) (arr : Array α) :
        Array.foldrM f init arr = List.foldrM f init arr.toList
        Equations
        Instances For
          @[reducible, inline, deprecated Array.foldr_eq_foldr_toList]
          abbrev Array.foldr_eq_foldr_data {α : Type u_1} {β : Type u_2} (f : αββ) (init : β) (arr : Array α) :
          Array.foldr f init arr = List.foldr f init arr.toList
          Equations
          Instances For
            @[reducible, inline, deprecated Array.push_toList]
            abbrev Array.push_data {α : Type u_1} (arr : Array α) (a : α) :
            (arr.push a).toList = arr.toList ++ [a]
            Equations
            Instances For
              @[reducible, inline, deprecated Array.toListImpl_eq]
              abbrev Array.toList_eq {α : Type u_1} (arr : Array α) :
              arr.toListImpl = arr.toList
              Equations
              Instances For
                @[reducible, inline, deprecated Array.pop_toList]
                abbrev Array.pop_data {α : Type u_1} (arr : Array α) :
                arr.pop.toList = arr.toList.dropLast
                Equations
                Instances For
                  @[reducible, inline, deprecated Array.toList_append]
                  abbrev Array.append_data {α : Type u_1} (arr : Array α) (arr' : Array α) :
                  (arr ++ arr').toList = arr.toList ++ arr'.toList
                  Equations
                  Instances For
                    @[reducible, inline, deprecated Array.appendList_toList]
                    abbrev Array.appendList_data {α : Type u_1} (arr : Array α) (l : List α) :
                    (arr ++ l).toList = arr.toList ++ l
                    Equations
                    Instances For