Documentation

Mathlib.RepresentationTheory.Coinvariants

Coinvariants a group representation #

Given a commutative ring k and a monoid G, this file introduces the coinvariants of a k-linear G-representation (V, ρ).

We first define Representation.Coinvariants.ker, the submodule of V generated by elements of the form ρ g x - x for x : V, g : G. Then the coinvariants of (V, ρ) are the quotient of V by this submodule. We show that the functor sending a representation to its coinvariants is left adjoint to the functor equipping a module with the trivial representation.

def Representation.Coinvariants.ker {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :

The submodule of a representation generated by elements of the form ρ g x - x.

Equations
def Representation.Coinvariants {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :
Type u_3

The coinvariants of a representation, V ⧸ ⟨{ρ g x - x | g ∈ G, x ∈ V}⟩.

Equations
theorem Representation.Coinvariants.sub_mem_ker {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] {ρ : Representation k G V} (g : G) (x : V) :
(ρ g) x - x ker ρ
theorem Representation.Coinvariants.mem_ker_of_eq {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] {ρ : Representation k G V} (g : G) (x a : V) (h : (ρ g) x - x = a) :
a ker ρ
def Representation.Coinvariants.mk {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :

The quotient map from a representation to its coinvariants as a linear map.

Equations
theorem Representation.Coinvariants.mk_eq_iff {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) {x y : V} :
(mk ρ) x = (mk ρ) y x - y ker ρ
theorem Representation.Coinvariants.mk_eq_zero {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) {x : V} :
(mk ρ) x = 0 x ker ρ
theorem Representation.Coinvariants.mk_surjective {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :
@[simp]
theorem Representation.Coinvariants.mk_self_apply {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) (g : G) (x : V) :
(mk ρ) ((ρ g) x) = (mk ρ) x
theorem Representation.Coinvariants.induction_on {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] {ρ : Representation k G V} {motive : ρ.CoinvariantsProp} (x : ρ.Coinvariants) (h : ∀ (v : V), motive ((mk ρ) v)) :
motive x
def Representation.Coinvariants.lift {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] (ρ : Representation k G V) (f : V →ₗ[k] W) (h : ∀ (x : G), f ∘ₗ ρ x = f) :

A G-invariant linear map induces a linear map out of the coinvariants of a G-representation.

Equations
@[simp]
theorem Representation.Coinvariants.lift_comp_mk {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] (ρ : Representation k G V) (f : V →ₗ[k] W) (h : ∀ (x : G), f ∘ₗ ρ x = f) :
lift ρ f h ∘ₗ mk ρ = f
@[simp]
theorem Representation.Coinvariants.lift_mk {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] (ρ : Representation k G V) (f : V →ₗ[k] W) (h : ∀ (x : G), f ∘ₗ ρ x = f) (x : V) :
(lift ρ f h) ((mk ρ) x) = f x
theorem Representation.Coinvariants.hom_ext {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {f g : ρ.Coinvariants →ₗ[k] W} (H : f ∘ₗ mk ρ = g ∘ₗ mk ρ) :
f = g
theorem Representation.Coinvariants.hom_ext_iff {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {f g : ρ.Coinvariants →ₗ[k] W} :
f = g f ∘ₗ mk ρ = g ∘ₗ mk ρ
noncomputable def Representation.Coinvariants.map {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] (ρ : Representation k G V) (τ : Representation k G W) (f : V →ₗ[k] W) (hf : ∀ (g : G), f ∘ₗ ρ g = τ g ∘ₗ f) :

Given G-representations on k-modules V, W, a linear map V →ₗ[k] W commuting with the representations induces a k-linear map between the coinvariants.

Equations
@[simp]
theorem Representation.Coinvariants.map_comp_mk {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {τ : Representation k G W} (f : V →ₗ[k] W) (hf : ∀ (g : G), f ∘ₗ ρ g = τ g ∘ₗ f) :
map ρ τ f hf ∘ₗ mk ρ = mk τ ∘ₗ f
@[simp]
theorem Representation.Coinvariants.map_mk {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] {ρ : Representation k G V} {τ : Representation k G W} (f : V →ₗ[k] W) (hf : ∀ (g : G), f ∘ₗ ρ g = τ g ∘ₗ f) (x : V) :
(map ρ τ f hf) ((mk ρ) x) = (mk τ) (f x)
@[simp]
theorem Representation.Coinvariants.map_id {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] (ρ : Representation k G V) :
@[simp]
theorem Representation.Coinvariants.map_comp {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} {X : Type u_5} [CommRing k] [Monoid G] [AddCommGroup V] [Module k V] [AddCommGroup W] [Module k W] [AddCommGroup X] [Module k X] {ρ : Representation k G V} {τ : Representation k G W} (υ : Representation k G X) (φ : V →ₗ[k] W) (ψ : W →ₗ[k] X) (H : ∀ (g : G), φ ∘ₗ ρ g = τ g ∘ₗ φ) (h : ∀ (g : G), ψ ∘ₗ τ g = υ g ∘ₗ ψ) :
map τ υ ψ h ∘ₗ map ρ τ φ H = map ρ υ (ψ ∘ₗ φ)
noncomputable def Rep.coinvariantsFunctor (k G : Type u) [CommRing k] [Monoid G] :

The functor sending a representation to its coinvariants.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem Rep.coinvariantsFunctor_map_hom (k G : Type u) [CommRing k] [Monoid G] {X✝ Y✝ : Rep k G} (f : X✝ Y✝) :
noncomputable def Rep.coinvariantsMk (k G : Type u) [CommRing k] [Monoid G] :

The quotient map from a representation to its coinvariants induces a natural transformation from the forgetful functor Rep k G ⥤ ModuleCat k to the coinvariants functor.

Equations
@[reducible, inline]
noncomputable abbrev Rep.desc {k G : Type u} [CommRing k] [Monoid G] {A B : Rep k G} [B.ρ.IsTrivial] (f : A B) :

The linear map underlying a G-representation morphism A ⟶ B, where B has the trivial representation, factors through A_G.

Equations

The adjunction between the functor sending a representation to its coinvariants and the functor equipping a module with the trivial representation.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]