Documentation

Mathlib.Combinatorics.Quiver.Basic

Quivers #

This module defines quivers. A quiver on a type V of vertices assigns to every pair a b : V of vertices a type a ⟶ b of arrows from a to b. This is a very permissive notion of directed graph.

Implementation notes #

Currently Quiver is defined with Hom : V → V → Sort v. This is different from the category theory setup, where we insist that morphisms live in some Type. There's some balance here: it's nice to allow Prop to ensure there are no multiple arrows, but it is also results in error-prone universe signatures when constraints require a Type.

class Quiver (V : Type u) :
Type (max u v)

A quiver G on a type V of vertices assigns to every pair a b : V of vertices a type a ⟶ b of arrows from a to b.

For graphs with no repeated edges, one can use Quiver.{0} V, which ensures a ⟶ b : Prop. For multigraphs, one can use Quiver.{v+1} V, which ensures a ⟶ b : Type v.

Because Category will later extend this class, we call the field Hom. Except when constructing instances, you should rarely see this, and use the notation instead.

  • Hom : VVSort v

    The type of edges/arrows/morphisms between a given source and target.

Instances

    Notation for the type of edges/arrows/morphisms between a given source and target in a quiver or category.

    Equations
    instance Quiver.opposite {V : Type u_1} [Quiver V] :

    Vᵒᵖ reverses the direction of all arrows of V.

    Equations
    def Quiver.Hom.op {V : Type u_1} [Quiver V] {X Y : V} (f : X Y) :

    The opposite of an arrow in V.

    Equations
    def Quiver.Hom.unop {V : Type u_1} [Quiver V] {X Y : Vᵒᵖ} (f : X Y) :

    Given an arrow in Vᵒᵖ, we can take the "unopposite" back in V.

    Equations
    def Quiver.Hom.opEquiv {V : Type u_1} [Quiver V] {X Y : V} :

    The bijection (X ⟶ Y) ≃ (op Y ⟶ op X).

    Equations
    @[simp]
    theorem Quiver.Hom.opEquiv_apply {V : Type u_1} [Quiver V] {X Y : V} (unop : X Y) :
    def Quiver.Empty (V : Type u) :

    A type synonym for a quiver with no arrows.

    Equations
    instance Quiver.emptyQuiver (V : Type u) :
    Equations
    @[simp]
    theorem Quiver.empty_arrow {V : Type u} (a b : Empty V) :
    @[reducible, inline]
    abbrev Quiver.IsThin (V : Type u) [Quiver V] :

    A quiver is thin if it has no parallel arrows.

    Equations
    def Quiver.homOfEq {V : Type u_1} [Quiver V] {X Y : V} (f : X Y) {X' Y' : V} (hX : X = X') (hY : Y = Y') :
    X' Y'

    An arrow in a quiver can be transported across equalities between the source and target objects.

    Equations
    @[simp]
    theorem Quiver.homOfEq_trans {V : Type u_1} [Quiver V] {X Y : V} (f : X Y) {X' Y' : V} (hX : X = X') (hY : Y = Y') {X'' Y'' : V} (hX' : X' = X'') (hY' : Y' = Y'') :
    homOfEq (homOfEq f hX hY) hX' hY' = homOfEq f
    theorem Quiver.homOfEq_injective {V : Type u_1} [Quiver V] {X X' Y Y' : V} (hX : X = X') (hY : Y = Y') {f g : X Y} (h : homOfEq f hX hY = homOfEq g hX hY) :
    f = g
    @[simp]
    theorem Quiver.homOfEq_rfl {V : Type u_1} [Quiver V] {X Y : V} (f : X Y) :
    homOfEq f = f
    theorem Quiver.heq_of_homOfEq_ext {V : Type u_1} [Quiver V] {X Y X' Y' : V} (hX : X = X') (hY : Y = Y') {f : X Y} {f' : X' Y'} (e : homOfEq f hX hY = f') :
    HEq f f'
    theorem Quiver.homOfEq_eq_iff {V : Type u_1} [Quiver V] {X X' Y Y' : V} (f : X Y) (g : X' Y') (hX : X = X') (hY : Y = Y') :
    homOfEq f hX hY = g f = homOfEq g
    theorem Quiver.eq_homOfEq_iff {V : Type u_1} [Quiver V] {X X' Y Y' : V} (f : X Y) (g : X' Y') (hX : X' = X) (hY : Y' = Y) :
    f = homOfEq g hX hY homOfEq f = g
    theorem Quiver.homOfEq_heq {V : Type u_1} [Quiver V] {X Y X' Y' : V} (hX : X = X') (hY : Y = Y') (f : X Y) :
    HEq (homOfEq f hX hY) f
    theorem Quiver.homOfEq_heq_left_iff {V : Type u_1} [Quiver V] {X Y X' Y' : V} (f : X Y) (g : X' Y') (hX : X = X') (hY : Y = Y') :
    HEq (homOfEq f hX hY) g HEq f g
    theorem Quiver.homOfEq_heq_right_iff {V : Type u_1} [Quiver V] {X Y X' Y' : V} (f : X Y) (g : X' Y') (hX : X' = X) (hY : Y' = Y) :
    HEq f (homOfEq g hX hY) HEq f g