Documentation

Mathlib.RepresentationTheory.Coinduced

Coinduced representations #

Given a commutative ring k, a monoid homomorphism φ : G →* H, and a k-linear G-representation A, this file introduces the coinduced representation CoindGH(A) of A as an H-representation.

By coind φ A we mean the submodule of functions H → A such that for all g : G, h : H, f (φ g * h) = ρ g (f h). We define a representation of H on this submodule by sending h : H and f : coind φ A to the function H → A sending h₁ to f (h₁ * h).

Alternatively, we could define CoindGH(A) as the morphisms Hom(k[H],A) in the category Rep k G, which we equip with the H-representation sending h : H and f : k[H] ⟶ A to the representation morphism sending r · h₁ to r • f (h₁ * h). We include this definition as coind' φ A and prove the two representations are isomorphic.

We also prove that the restriction functor Rep k H ⥤ Rep k G along φ is left adjoint to the coinduction functor and hence that the coinduction functor preserves limits.

Main definitions #

def Representation.coindV {k : Type u_1} {G : Type u_2} {H : Type u_3} [CommSemiring k] [Monoid G] [Monoid H] (φ : G →* H) {A : Type u_4} [AddCommMonoid A] [Module k A] (ρ : Representation k G A) :
Submodule k (HA)

If ρ : Representation k G A and φ : G →* H then coindV φ ρ is the sub-k-module of functions H → A underlying the coinduction of ρ along φ, i.e., the functions f : H → A such that f (φ g * h) = (ρ g) (f h) for all g : G and h : H.

Equations
  • Representation.coindV φ ρ = { carrier := {f : HA | ∀ (g : G) (h : H), f (φ g * h) = (ρ g) (f h)}, add_mem' := , zero_mem' := , smul_mem' := }
@[simp]
theorem Representation.coe_coindV {k : Type u_1} {G : Type u_2} {H : Type u_3} [CommSemiring k] [Monoid G] [Monoid H] (φ : G →* H) {A : Type u_4} [AddCommMonoid A] [Module k A] (ρ : Representation k G A) :
(coindV φ ρ) = {f : HA | ∀ (g : G) (h : H), f (φ g * h) = (ρ g) (f h)}
def Representation.coind {k : Type u_1} {G : Type u_2} {H : Type u_3} [CommSemiring k] [Monoid G] [Monoid H] (φ : G →* H) {A : Type u_4} [AddCommMonoid A] [Module k A] (ρ : Representation k G A) :
Representation k H (coindV φ ρ)

If ρ : Representation k G A and φ : G →* H then coind φ ρ is the representation coinduced by ρ along φ, defined as the following action of H on the submodule coindV φ ρ of G-equivariant functions from H to A: we let h : H send the function f : H → A to the function sending h₁ to f (h₁ * h).

See also Rep.coind and Representation.coind' for variants involving the category Rep k G.

Equations
@[simp]
theorem Representation.coind_apply {k : Type u_1} {G : Type u_2} {H : Type u_3} [CommSemiring k] [Monoid G] [Monoid H] (φ : G →* H) {A : Type u_4} [AddCommMonoid A] [Module k A] (ρ : Representation k G A) (h : H) :
(coind φ ρ) h = (LinearMap.funLeft k A fun (x : H) => x * h).restrict
@[reducible, inline]
noncomputable abbrev Rep.coind {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
Rep k H

If φ : G →* H and A : Rep k G then coind φ A is the coinduction of A along φ, defined by letting H act on the G-equivariant functions H → A by (h • f) h₁ := f (h₁ * h).

Equations
noncomputable def Rep.coindMap {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {A B : Rep k G} (f : A B) :
coind φ A coind φ B

Given a monoid morphism φ : G →* H and a morphism of G-representations f : A ⟶ B, there is a natural H-representation morphism coind φ A ⟶ coind φ B, given by postcomposition by f.

Equations
@[simp]
theorem Rep.coindMap_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {A B : Rep k G} (f : A B) :
noncomputable def Rep.coindFunctor (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) :

Given a monoid homomorphism φ : G →* H, this is the functor sending a G-representation A to the coinduced H-representation coind φ A, with action on maps given by postcomposition.

Equations
@[simp]
theorem Rep.coindFunctor_map (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {X✝ Y✝ : Rep k G} (f : X✝ Y✝) :
(coindFunctor k φ).map f = coindMap φ f
@[simp]
theorem Rep.coindFunctor_obj (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
(coindFunctor k φ).obj A = coind φ A
noncomputable def Representation.coind' {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :

If φ : G →* H and A : Rep k G then coind' φ A, the coinduction of A along φ, is defined as an H-action on Hom_{k[G]}(k[H], A). If f : k[H] → A is G-equivariant then (h • f) (r • h₁) := r • f (h₁ * h), where r : k.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Representation.coind'_apply_apply {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) (h : H) (f : (Action.res (ModuleCat k) φ).obj (Rep.leftRegular k H) A) :
@[reducible, inline]
noncomputable abbrev Rep.coind' {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
Rep k H

If φ : G →* H and A : Rep k G then coind' φ A, the coinduction of A along φ, is defined as an H-action on Hom_{k[G]}(k[H], A). If f : k[H] → A is G-equivariant then (h • f) (r • h₁) := r • f (h₁ * h), where r : k.

Equations
theorem Rep.coind'_ext {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {A : Rep k G} {f g : (coind' φ A).V} (hfg : ∀ (h : H), (CategoryTheory.ConcreteCategory.hom f.hom) (Finsupp.single h 1) = (CategoryTheory.ConcreteCategory.hom g.hom) (Finsupp.single h 1)) :
f = g
theorem Rep.coind'_ext_iff {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] {φ : G →* H} {A : Rep k G} {f g : (coind' φ A).V} :
noncomputable def Rep.coindMap' {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {A B : Rep k G} (f : A B) :
coind' φ A coind' φ B

Given a monoid morphism φ : G →* H and a morphism of G-representations f : A ⟶ B, there is a natural H-representation morphism coind' φ A ⟶ coind' φ B, given by postcomposition by f.

Equations
@[simp]
theorem Rep.coindMap'_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {A B : Rep k G} (f : A B) :
noncomputable def Rep.coindFunctor' (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) :

Given a monoid homomorphism φ : G →* H, this is the functor sending a G-representation A to the coinduced H-representation coind' φ A, with action on maps given by postcomposition.

Equations
@[simp]
theorem Rep.coindFunctor'_obj (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
(coindFunctor' k φ).obj A = coind' φ A
@[simp]
theorem Rep.coindFunctor'_map (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) {X✝ Y✝ : Rep k G} (f : X✝ Y✝) :
noncomputable def Rep.coindVLEquiv {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :

If φ : G →* H and A : Rep k G then the k-submodule of functions f : H → A such that for all g : G, h : H, f (φ g * h) = A.ρ g (f h), is k-linearly equivalent to the G-representation morphisms k[H] ⟶ A.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Rep.coindVLEquiv_symm_apply_coe {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) (f : (Action.res (ModuleCat k) φ).obj (leftRegular k H) A) (h : H) :
@[simp]
theorem Rep.coindVLEquiv_apply_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) (f : (Representation.coindV φ A.ρ)) :
noncomputable def Rep.coindIso {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
coind φ A coind' φ A

coind φ A and coind' φ A are isomorphic representations, with the underlying k-linear equivalence given by coindVLEquiv.

Equations
@[simp]
theorem Rep.coindIso_inv_hom_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
@[simp]
theorem Rep.coindIso_hom_hom_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (A : Rep k G) :
noncomputable def Rep.coindFunctorIso {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) :

Given a monoid homomorphism φ : G →* H, the coinduction functors Rep k G ⥤ Rep k H given by coindFunctor k φ and coindFunctor' k φ are naturally isomorphic, with isomorphism on objects given by coindIso φ.

Equations
@[simp]
@[simp]
theorem Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (X : Rep k G) (f : (Representation.coindV φ X.ρ)) (d : H →₀ k) :
(ModuleCat.Hom.hom ((ModuleCat.Hom.hom ((coindFunctorIso φ).hom.app X).hom) f).hom) d = d.sum fun (i : H) (c : k) => c f i
noncomputable def Rep.resCoindHomLEquiv {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (B : Rep k H) (A : Rep k G) :
((Action.res (ModuleCat k) φ).obj B A) ≃ₗ[k] B coind φ A

Given a monoid homomorphism φ : G →* H, an H-representation B, and a G-representation A, there is a k-linear equivalence between the G-representation morphisms B ⟶ A and the H-representation morphisms B ⟶ coind φ A.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Rep.resCoindHomLEquiv_apply_hom {k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (B : Rep k H) (A : Rep k G) (f : (Action.res (ModuleCat k) φ).obj B A) :
@[reducible, inline]
noncomputable abbrev Rep.resCoindAdjunction (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) :

Given a monoid homomorphism φ : G →* H, the coinduction functor Rep k G ⥤ Rep k H is right adjoint to the restriction functor along φ.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Rep.resCoindAdjunction_unit_app_hom_hom (k : Type u) {G H : Type u} [CommRing k] [Monoid G] [Monoid H] (φ : G →* H) (X : Action (ModuleCat k) H) :