Documentation

Mathlib.CategoryTheory.Sums.Associator

Associator for binary disjoint union of categories. #

The associator functor ((C ⊕ D) ⊕ E) ⥤ (C ⊕ (D ⊕ E)) and its inverse form an equivalence.

The associator functor (C ⊕ D) ⊕ E ⥤ C ⊕ (D ⊕ E) for sums of categories.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.sum.associator_map_inl_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : C} (f : X Y) :
(associator C D E).map ((Sum.inl_ (C D) E).map ((Sum.inl_ C D).map f)) = (Sum.inl_ C (D E)).map f
@[simp]
theorem CategoryTheory.sum.associator_map_inl_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : D} (f : X Y) :
(associator C D E).map ((Sum.inl_ (C D) E).map ((Sum.inr_ C D).map f)) = (Sum.inr_ C (D E)).map ((Sum.inl_ D E).map f)
@[simp]
theorem CategoryTheory.sum.associator_map_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : E} (f : X Y) :
(associator C D E).map ((Sum.inr_ (C D) E).map f) = (Sum.inr_ C (D E)).map ((Sum.inr_ D E).map f)

Characterizing the composition of the associator and the left inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Characterizing the composition of the associator and the right inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Further characterizing the composition of the associator and the left inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Further characterizing the composition of the associator and the left inclusion.

Equations
  • One or more equations did not get rendered due to their size.

The inverse associator functor C ⊕ (D ⊕ E) ⥤ (C ⊕ D) ⊕ E for sums of categories.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.sum.inverseAssociator_map_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : C} (f : X Y) :
(inverseAssociator C D E).map ((Sum.inl_ C (D E)).map f) = (Sum.inl_ (C D) E).map ((Sum.inl_ C D).map f)
@[simp]
theorem CategoryTheory.sum.inverseAssociator_map_inr_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : D} (f : X Y) :
(inverseAssociator C D E).map ((Sum.inr_ C (D E)).map ((Sum.inl_ D E).map f)) = (Sum.inl_ (C D) E).map ((Sum.inr_ C D).map f)
@[simp]
theorem CategoryTheory.sum.inverseAssociator_map_inr_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : E} (f : X Y) :
(inverseAssociator C D E).map ((Sum.inr_ C (D E)).map ((Sum.inr_ D E).map f)) = (Sum.inr_ (C D) E).map f

Characterizing the composition of the inverse of the associator and the left inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Characterizing the composition of the inverse of the associator and the right inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Further characterizing the composition of the inverse of the associator and the right inclusion.

Equations
  • One or more equations did not get rendered due to their size.

Further characterizing the composition of the inverse of the associator and the right inclusion.

Equations
  • One or more equations did not get rendered due to their size.

The equivalence of categories expressing associativity of sums of categories.

Equations
  • One or more equations did not get rendered due to their size.