Documentation

Mathlib.CategoryTheory.Subpresheaf.Image

The image of a subpresheaf #

Given a morphism of presheaves of types p : F' ⟶ F, we define its range Subpresheaf.range p. More generally, if G' : Subpresheaf F', we define G'.image p : Subpresheaf F as the image of G' by f, and if G : Subpresheaf F, we define its preimage G.preimage f : Subpresheaf F'.

The range of a morphism of presheaves of types, as a subpresheaf of the target.

Equations
@[simp]
theorem CategoryTheory.Subpresheaf.range_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) (U : Cᵒᵖ) :
(range p).obj U = Set.range (p.app U)
def CategoryTheory.Subpresheaf.lift {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :

If the image of a morphism falls in a subpresheaf, then the morphism factors through it.

Equations
@[simp]
theorem CategoryTheory.Subpresheaf.lift_app_coe {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) (U : Cᵒᵖ) (x : F'.obj U) :
((lift f hf).app U x) = f.app U x
@[simp]
theorem CategoryTheory.Subpresheaf.lift_ι {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :
@[simp]

Given a morphism p : F' ⟶ F of presheaves of types, this is the morphism from F' to its range.

Equations
theorem CategoryTheory.Subpresheaf.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) {i : Cᵒᵖ} (x : F'.obj i) :
((toRange p).app i x) = p.app i x
theorem CategoryTheory.Subpresheaf.range_comp_le {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :

The image of a subpresheaf by a morphism of presheaves of types.

Equations
@[simp]
theorem CategoryTheory.Subpresheaf.image_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (i : Cᵒᵖ) :
(G.image f).obj i = f.app i '' G.obj i
@[simp]
theorem CategoryTheory.Subpresheaf.image_iSup {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} {ι : Type u_1} (G : ιSubpresheaf F) (f : F F') :
(⨆ (i : ι), G i).image f = ⨆ (i : ι), (G i).image f
theorem CategoryTheory.Subpresheaf.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (g : F' F'') :
theorem CategoryTheory.Subpresheaf.range_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :

The preimage of a subpresheaf by a morphism of presheaves of types.

Equations
@[simp]
theorem CategoryTheory.Subpresheaf.preimage_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) (n : Cᵒᵖ) :
(G.preimage p).obj n = p.app n ⁻¹' G.obj n
theorem CategoryTheory.Subpresheaf.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F'' F') (g : F' F) :
theorem CategoryTheory.Subpresheaf.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (G' : Subpresheaf F') :
G.image f G' G G'.preimage f

Given a morphism p : F' ⟶ F of presheaves of types and G : Subpresheaf F, this is the morphism from the preimage of G by p to G.

Equations
@[simp]
theorem CategoryTheory.Subpresheaf.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) [hp : Epi p] :
(G.preimage p).image p = G
@[deprecated CategoryTheory.Subpresheaf.range (since := "2025-01-25")]

Alias of CategoryTheory.Subpresheaf.range.


The range of a morphism of presheaves of types, as a subpresheaf of the target.

Equations
@[deprecated CategoryTheory.Subpresheaf.range_id (since := "2025-01-25")]

Alias of CategoryTheory.Subpresheaf.range_id.

@[deprecated CategoryTheory.Subpresheaf.toRange (since := "2025-01-25")]

Alias of CategoryTheory.Subpresheaf.toRange.


Given a morphism p : F' ⟶ F of presheaves of types, this is the morphism from F' to its range.

Equations
@[deprecated CategoryTheory.Subpresheaf.toRange_ι (since := "2025-01-25")]

Alias of CategoryTheory.Subpresheaf.toRange_ι.

@[deprecated CategoryTheory.Subpresheaf.range_comp_le (since := "2025-01-25")]

Alias of CategoryTheory.Subpresheaf.range_comp_le.