Documentation

Mathlib.CategoryTheory.SmallObject.Iteration.FunctorOfCocone

The functor from Set.Iic j deduced from a cocone #

Given a functor F : Set.Iio j ⥤ C and c : Cocone F, we define an extension of F as a functor Set.Iic j ⥤ C for which the top element is mapped to c.pt.

def CategoryTheory.SmallObject.SuccStruct.ofCocone.obj {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) :
C

Auxiliary definition for ofCocone.

Equations
def CategoryTheory.SmallObject.SuccStruct.ofCocone.objIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
obj c i F.obj i, hi

Auxiliary definition for ofCocone.

Equations
def CategoryTheory.SmallObject.SuccStruct.ofCocone.map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ j) :
obj c i₁ obj c i₂

Auxiliary definition for ofCocone.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.SmallObject.SuccStruct.ofCocone.map_id {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i j) :
map c i i hi = CategoryStruct.id (obj c i)
theorem CategoryTheory.SmallObject.SuccStruct.ofCocone.map_comp {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ i₃ : J) (hi : i₁ i₂) (hi' : i₂ i₃) (hi₃ : i₃ j) :
map c i₁ i₃ hi₃ = CategoryStruct.comp (map c i₁ i₂ hi ) (map c i₂ i₃ hi' hi₃)
def CategoryTheory.SmallObject.SuccStruct.ofCocone {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) :
Functor (↑(Set.Iic j)) C

Given a functor F : Set.Iio j ⥤ C and a cocone c : Cocone F, where j : J and J is linearly ordered, this is the functor Set.Iic j ⥤ C which extends F and sends the top element to c.pt.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_obj_eq {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
(ofCocone c).obj i, = F.obj i, hi
def CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
(ofCocone c).obj i, F.obj i, hi

The isomorphism (ofCocone c).obj ⟨i, _⟩ ≅ F.obj ⟨i, _⟩ when i < j.

Equations
theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_map {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
theorem CategoryTheory.SmallObject.SuccStruct.ofCocone_map_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : (ofCocone c).obj i₂, Z) :
theorem CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) :
theorem CategoryTheory.SmallObject.SuccStruct.ofCoconeObjIso_hom_naturality_assoc {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (hi : i₁ i₂) (hi₂ : i₂ < j) {Z : C} (h : F.obj i₂, hi₂ Z) :

The isomorphism expressing that ofCocone c extends the functor F when c : Cocone F.

Equations
  • One or more equations did not get rendered due to their size.

If c is a colimit cocone, then so is coconeOfLE (ofCocone c) (Preorder.le_refl j).

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i₁ i₂ : J) (h₁₂ : i₁ i₂) (h₂ : i₂ < j) :
arrowMap (ofCocone c) i₁ i₂ h₁₂ = Arrow.mk (F.map (homOfLE h₁₂))
theorem CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top {C : Type u_1} [Category.{u_2, u_1} C] {J : Type u} [LinearOrder J] {j : J} {F : Functor (↑(Set.Iio j)) C} (c : Limits.Cocone F) (i : J) (hi : i < j) :
arrowMap (ofCocone c) i j = Arrow.mk (c.ι.app i, hi)