Documentation

Mathlib.CategoryTheory.Products.Basic

Cartesian products of categories #

We define the category instance on C × D when C and D are categories.

We define:

We further define evaluation : C ⥤ (C ⥤ D) ⥤ D and evaluationUncurried : C × (C ⥤ D) ⥤ D, and products of functors and natural transformations, written F.prod G and α.prod β.

prod C D gives the cartesian product of two categories.

Stacks Tag 001K

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.prod_comp_fst (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ Z✝ : C × D} (f : (X✝.1 Y✝.1) × (X✝.2 Y✝.2)) (g : (Y✝.1 Z✝.1) × (Y✝.2 Z✝.2)) :
@[simp]
theorem CategoryTheory.prod_comp_snd (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ Z✝ : C × D} (f : (X✝.1 Y✝.1) × (X✝.2 Y✝.2)) (g : (Y✝.1 Z✝.1) × (Y✝.2 Z✝.2)) :
@[simp]
theorem CategoryTheory.prod_Hom (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X Y : C × D) :
(X Y) = ((X.1 Y.1) × (X.2 Y.2))
theorem CategoryTheory.prod.hom_ext (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X Y : C × D} {f g : X Y} (h₁ : f.1 = g.1) (h₂ : f.2 = g.2) :
f = g
theorem CategoryTheory.prod.hom_ext_iff {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {X Y : C × D} {f g : X Y} :
f = g f.1 = g.1 f.2 = g.2
@[simp]

Two rfl lemmas that cannot be generated by @[simps].

@[simp]
theorem CategoryTheory.prod_comp (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {P Q R : C} {S T U : D} (f : (P, S) (Q, T)) (g : (Q, T) (R, U)) :
theorem CategoryTheory.isIso_prod_iff (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {P Q : C} {S T : D} {f : (P, S) (Q, T)} :
IsIso f IsIso f.1 IsIso f.2
def CategoryTheory.prod.etaIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (X : C × D) :
(X.1, X.2) X

The isomorphism between (X.1, X.2) and X.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Iso.prod {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {P Q : C} {S T : D} (f : P Q) (g : S T) :
(P, S) (Q, T)

Construct an isomorphism in C × D out of two isomorphisms in C and D.

Equations
@[simp]
theorem CategoryTheory.Iso.prod_inv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {P Q : C} {S T : D} (f : P Q) (g : S T) :
(f.prod g).inv = (f.inv, g.inv)
@[simp]
theorem CategoryTheory.Iso.prod_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {P Q : C} {S T : D} (f : P Q) (g : S T) :
(f.prod g).hom = (f.hom, g.hom)

Category.uniformProd C D is an additional instance specialised so both factors have the same universe levels. This helps typeclass resolution.

Equations
def CategoryTheory.Prod.sectL (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) :
Functor C (C × D)

sectL C Z is the functor C ⥤ C × D given by X ↦ (X, Z).

Equations
@[simp]
theorem CategoryTheory.Prod.sectL_obj (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) (X : C) :
(sectL C Z).obj X = (X, Z)
@[simp]
theorem CategoryTheory.Prod.sectL_map (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
def CategoryTheory.Prod.sectR {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] :
Functor D (C × D)

sectR Z D is the functor D ⥤ C × D given by Y ↦ (Z, Y) .

Equations
@[simp]
theorem CategoryTheory.Prod.sectR_obj {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] (X : D) :
(sectR Z D).obj X = (Z, X)
@[simp]
theorem CategoryTheory.Prod.sectR_map {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : D} (f : X✝ Y✝) :
@[deprecated CategoryTheory.Prod.sectL (since := "2024-11-12")]
def CategoryTheory.Prod.sectl (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) :
Functor C (C × D)

Alias of CategoryTheory.Prod.sectL.


sectL C Z is the functor C ⥤ C × D given by X ↦ (X, Z).

Equations
@[deprecated CategoryTheory.Prod.sectR (since := "2024-11-12")]
def CategoryTheory.Prod.sectr {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] :
Functor D (C × D)

Alias of CategoryTheory.Prod.sectR.


sectR Z D is the functor D ⥤ C × D given by Y ↦ (Z, Y) .

Equations
@[deprecated CategoryTheory.Prod.sectL_obj (since := "2024-11-12")]
theorem CategoryTheory.Prod.sectl_obj (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) (X : C) :
(sectL C Z).obj X = (X, Z)

Alias of CategoryTheory.Prod.sectL_obj.

@[deprecated CategoryTheory.Prod.sectR_obj (since := "2024-11-12")]
theorem CategoryTheory.Prod.sectr_obj {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] (X : D) :
(sectR Z D).obj X = (Z, X)

Alias of CategoryTheory.Prod.sectR_obj.

@[deprecated CategoryTheory.Prod.sectL_map (since := "2024-11-12")]
theorem CategoryTheory.Prod.sectl_map (C : Type u₁) [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (Z : D) {X✝ Y✝ : C} (f : X✝ Y✝) :

Alias of CategoryTheory.Prod.sectL_map.

@[deprecated CategoryTheory.Prod.sectR_map (since := "2024-11-12")]
theorem CategoryTheory.Prod.sectr_map {C : Type u₁} [Category.{v₁, u₁} C] (Z : C) (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : D} (f : X✝ Y✝) :

Alias of CategoryTheory.Prod.sectR_map.

fst is the functor (X, Y) ↦ X.

Equations
@[simp]
theorem CategoryTheory.Prod.fst_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : C × D} (f : X✝ Y✝) :
(fst C D).map f = f.1
@[simp]
theorem CategoryTheory.Prod.fst_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X : C × D) :
(fst C D).obj X = X.1

snd is the functor (X, Y) ↦ Y.

Equations
@[simp]
theorem CategoryTheory.Prod.snd_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : C × D} (f : X✝ Y✝) :
(snd C D).map f = f.2
@[simp]
theorem CategoryTheory.Prod.snd_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X : C × D) :
(snd C D).obj X = X.2

The functor swapping the factors of a cartesian product of categories, C × D ⥤ D × C.

Equations
@[simp]
theorem CategoryTheory.Prod.swap_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : C × D} (f : X✝ Y✝) :
(swap C D).map f = (f.2, f.1)
@[simp]
theorem CategoryTheory.Prod.swap_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X : C × D) :
(swap C D).obj X = (X.2, X.1)

Swapping the factors of a cartesian product of categories twice is naturally isomorphic to the identity functor.

Equations
  • One or more equations did not get rendered due to their size.

The equivalence, given by swapping factors, between C × D and D × C.

Equations
  • One or more equations did not get rendered due to their size.

Any morphism in a product factors as a morphsim whose left component is an identity followed by a morphism whose right component is an identity.

Any morphism in a product factors as a morphsim whose right component is an identity followed by a morphism whose left component is an identity.

The "evaluation at X" functor, such that (evaluation.obj X).obj F = F.obj X, which is functorial in both X and F.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.evaluation_obj_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X : C) (F : Functor C D) :
((evaluation C D).obj X).obj F = F.obj X
@[simp]
theorem CategoryTheory.evaluation_map_app (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {x✝ x✝¹ : C} (f : x✝ x✝¹) (F : Functor C D) :
((evaluation C D).map f).app F = F.map f
@[simp]
theorem CategoryTheory.evaluation_obj_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (X : C) {X✝ Y✝ : Functor C D} (α : X✝ Y✝) :
((evaluation C D).obj X).map α = α.app X

The "evaluation of F at X" functor, as a functor C × (C ⥤ D) ⥤ D.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.evaluationUncurried_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {x y : C × Functor C D} (f : x y) :
(evaluationUncurried C D).map f = CategoryStruct.comp (x.2.map f.1) (f.2.app y.1)

The constant functor followed by the evaluation functor is just the identity.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Functor.prod {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor C D) :
Functor (A × C) (B × D)

The cartesian product of two functors.

Equations
  • F.prod G = { obj := fun (X : A × C) => (F.obj X.1, G.obj X.2), map := fun {X Y : A × C} (f : X Y) => (F.map f.1, G.map f.2), map_id := , map_comp := }
@[simp]
theorem CategoryTheory.Functor.prod_obj {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor C D) (X : A × C) :
(F.prod G).obj X = (F.obj X.1, G.obj X.2)
@[simp]
theorem CategoryTheory.Functor.prod_map {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor C D) {X✝ Y✝ : A × C} (f : X✝ Y✝) :
(F.prod G).map f = (F.map f.1, G.map f.2)
def CategoryTheory.Functor.prod' {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor A C) :
Functor A (B × C)

Similar to prod, but both functors start from the same category A

Equations
  • F.prod' G = { obj := fun (a : A) => (F.obj a, G.obj a), map := fun {X Y : A} (f : X Y) => (F.map f, G.map f), map_id := , map_comp := }
@[simp]
theorem CategoryTheory.Functor.prod'_obj {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor A C) (a : A) :
(F.prod' G).obj a = (F.obj a, G.obj a)
@[simp]
theorem CategoryTheory.Functor.prod'_map {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor A C) {X✝ Y✝ : A} (f : X✝ Y✝) :
(F.prod' G).map f = (F.map f, G.map f)
def CategoryTheory.Functor.prod'CompFst {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor A C) :
(F.prod' G).comp (Prod.fst B C) F

The product F.prod' G followed by projection on the first component is isomorphic to F

Equations
@[simp]
@[simp]
def CategoryTheory.Functor.prod'CompSnd {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor A C) :
(F.prod' G).comp (Prod.snd B C) G

The product F.prod' G followed by projection on the second component is isomorphic to G

Equations
@[simp]
@[simp]
@[simp]
theorem CategoryTheory.Functor.diag_obj (C : Type u₃) [Category.{v₃, u₃} C] (a : C) :
(diag C).obj a = (a, a)
@[simp]
theorem CategoryTheory.Functor.diag_map (C : Type u₃) [Category.{v₃, u₃} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
(diag C).map f = (f, f)
def CategoryTheory.NatTrans.prod {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F G : Functor A B} {H I : Functor C D} (α : F G) (β : H I) :
F.prod H G.prod I

The cartesian product of two natural transformations.

Equations
@[simp]
theorem CategoryTheory.NatTrans.prod_app_snd {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F G : Functor A B} {H I : Functor C D} (α : F G) (β : H I) (X : A × C) :
((prod α β).app X).2 = β.app X.2
@[simp]
theorem CategoryTheory.NatTrans.prod_app_fst {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F G : Functor A B} {H I : Functor C D} (α : F G) (β : H I) (X : A × C) :
((prod α β).app X).1 = α.app X.1
def CategoryTheory.NatTrans.prod' {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {F G : Functor A B} {H K : Functor A C} (α : F G) (β : H K) :
F.prod' H G.prod' K

The cartesian product of two natural transformations where both functors have the same source.

Equations
@[simp]
theorem CategoryTheory.NatTrans.prod'_app_fst {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {F G : Functor A B} {H K : Functor A C} (α : F G) (β : H K) (X : A) :
((prod' α β).app X).1 = α.app X
@[simp]
theorem CategoryTheory.NatTrans.prod'_app_snd {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {F G : Functor A B} {H K : Functor A C} (α : F G) (β : H K) (X : A) :
((prod' α β).app X).2 = β.app X

The cartesian product functor between functor categories

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.prodFunctor_map {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {X✝ Y✝ : Functor A B × Functor C D} (nm : X✝ Y✝) :
@[simp]
theorem CategoryTheory.prodFunctor_obj {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (FG : Functor A B × Functor C D) :
prodFunctor.obj FG = FG.1.prod FG.2
def CategoryTheory.NatIso.prod {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F F' : Functor A B} {G G' : Functor C D} (e₁ : F F') (e₂ : G G') :
F.prod G F'.prod G'

The cartesian product of two natural isomorphisms.

Equations
@[simp]
theorem CategoryTheory.NatIso.prod_hom {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F F' : Functor A B} {G G' : Functor C D} (e₁ : F F') (e₂ : G G') :
(prod e₁ e₂).hom = NatTrans.prod e₁.hom e₂.hom
@[simp]
theorem CategoryTheory.NatIso.prod_inv {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {F F' : Functor A B} {G G' : Functor C D} (e₁ : F F') (e₂ : G G') :
(prod e₁ e₂).inv = NatTrans.prod e₁.inv e₂.inv
def CategoryTheory.Equivalence.prod {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (E₁ : A B) (E₂ : C D) :
A × C B × D

The cartesian product of two equivalences of categories.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Equivalence.prod_functor {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (E₁ : A B) (E₂ : C D) :
(E₁.prod E₂).functor = E₁.functor.prod E₂.functor
@[simp]
theorem CategoryTheory.Equivalence.prod_counitIso {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (E₁ : A B) (E₂ : C D) :
@[simp]
theorem CategoryTheory.Equivalence.prod_unitIso {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (E₁ : A B) (E₂ : C D) :
(E₁.prod E₂).unitIso = NatIso.prod E₁.unitIso E₂.unitIso
@[simp]
theorem CategoryTheory.Equivalence.prod_inverse {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (E₁ : A B) (E₂ : C D) :
(E₁.prod E₂).inverse = E₁.inverse.prod E₂.inverse
def CategoryTheory.flipCompEvaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (a : A) :
F.flip.comp ((evaluation A C).obj a) F.obj a

F.flip composed with evaluation is the same as evaluating F.

Equations
@[simp]
@[simp]
theorem CategoryTheory.flip_comp_evaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (a : A) :
F.flip.comp ((evaluation A C).obj a) = F.obj a
def CategoryTheory.compEvaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (b : B) :
F.comp ((evaluation B C).obj b) F.flip.obj b

F composed with evaluation is the same as evaluating F.flip.

Equations
@[simp]
theorem CategoryTheory.compEvaluation_hom_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (b : B) (X : A) :
@[simp]
theorem CategoryTheory.compEvaluation_inv_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (b : B) (X : A) :
theorem CategoryTheory.comp_evaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A (Functor B C)) (b : B) :
F.comp ((evaluation B C).obj b) = F.flip.obj b

Whiskering by F and then evaluating at a is the same as evaluating at F.obj a.

Equations
@[simp]
theorem CategoryTheory.whiskeringLeft_comp_evaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (a : A) :
((whiskeringLeft A B C).obj F).comp ((evaluation A C).obj a) = (evaluation B C).obj (F.obj a)

Whiskering by F and then evaluating at a is the same as evaluating at F.obj a.

Whiskering by F and then evaluating at a is the same as evaluating at F and then applying F.

Equations
@[simp]
theorem CategoryTheory.whiskeringRight_comp_evaluation {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor B C) (a : A) :
((whiskeringRight A B C).obj F).comp ((evaluation A C).obj a) = ((evaluation A B).obj a).comp F

Whiskering by F and then evaluating at a is the same as evaluating at F and then applying F.

The forward direction for functorProdFunctorEquiv

Equations
  • One or more equations did not get rendered due to their size.

The backward direction for functorProdFunctorEquiv

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.functorProdToProdFunctor_map (A : Type u₁) [Category.{v₁, u₁} A] (B : Type u₂) [Category.{v₂, u₂} B] (C : Type u₃) [Category.{v₃, u₃} C] {X✝ Y✝ : Functor A (B × C)} (α : X✝ Y✝) :

The unit isomorphism for functorProdFunctorEquiv

Equations
  • One or more equations did not get rendered due to their size.

The counit isomorphism for functorProdFunctorEquiv

Equations
  • One or more equations did not get rendered due to their size.

The equivalence of categories between (A ⥤ B) × (A ⥤ C) and A ⥤ (B × C)

Equations
  • One or more equations did not get rendered due to their size.

The equivalence between the opposite of a product and the product of the opposites.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.prodOpEquiv_functor_map (C : Type u₃) [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {X✝ Y✝ : (C × D)ᵒᵖ} (f : X✝ Y✝) :
@[simp]
theorem CategoryTheory.prodOpEquiv_inverse_map (C : Type u₃) [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {X✝ Y✝ : Cᵒᵖ × Dᵒᵖ} (x✝ : X✝ Y✝) :