The category of bimodule objects over a pair of monoid objects. #
A bimodule object for a pair of monoid objects, all internal to some monoidal category.
- X : C
The underlying monoidal category
The left action of this bimodule object
- one_actLeft : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.one self.X) self.actLeft = (CategoryTheory.MonoidalCategoryStruct.leftUnitor self.X).hom
- left_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.mul self.X) self.actLeft = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X A.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actLeft) self.actLeft)
The right action of this bimodule object
- actRight_one : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X B.one) self.actRight = (CategoryTheory.MonoidalCategoryStruct.rightUnitor self.X).hom
- right_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X B.mul) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator self.X B.X B.X).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actRight B.X) self.actRight)
- middle_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actLeft B.X) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X self.X B.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actRight) self.actLeft)
A morphism of bimodule objects.
The morphism between
M's monoidal category andN's monoidal category- left_act_hom : CategoryTheory.CategoryStruct.comp M.actLeft self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.hom) N.actLeft
- right_act_hom : CategoryTheory.CategoryStruct.comp M.actRight self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.hom B.X) N.actRight
The identity morphism on a bimodule object.
Equations
- M.homInhabited = { default := M.id' }
Composition of bimodule object morphisms.
Equations
- Bimod.comp f g = { hom := CategoryTheory.CategoryStruct.comp f.hom g.hom, left_act_hom := ⋯, right_act_hom := ⋯ }
Equations
- One or more equations did not get rendered due to their size.
Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.
Equations
- One or more equations did not get rendered due to their size.
A monoid object as a bimodule over itself.
Equations
- Bimod.instInhabited A = { default := Bimod.regular A }
The forgetful functor from bimodule objects to the ambient category.
The underlying object of the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Left action for the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Right action for the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Tensor product of two bimodule objects as a bimodule object.
Equations
- One or more equations did not get rendered due to their size.
Left whiskering for morphisms of bimodule objects.
Equations
- One or more equations did not get rendered due to their size.
Right whiskering for morphisms of bimodule objects.
Equations
- One or more equations did not get rendered due to their size.
An auxiliary morphism for the definition of the underlying morphism of the forward component of the associator isomorphism.
Equations
- One or more equations did not get rendered due to their size.
The underlying morphism of the forward component of the associator isomorphism.
Equations
An auxiliary morphism for the definition of the underlying morphism of the inverse component of the associator isomorphism.
Equations
- One or more equations did not get rendered due to their size.
The underlying morphism of the inverse component of the associator isomorphism.
Equations
The underlying morphism of the forward component of the left unitor isomorphism.
Equations
The underlying morphism of the inverse component of the left unitor isomorphism.
Equations
- One or more equations did not get rendered due to their size.
The underlying morphism of the forward component of the right unitor isomorphism.
The underlying morphism of the inverse component of the right unitor isomorphism.
Equations
- One or more equations did not get rendered due to their size.
The associator as a bimodule isomorphism.
Equations
- L.associatorBimod M N = Bimod.isoOfIso { hom := Bimod.AssociatorBimod.hom L M N, inv := Bimod.AssociatorBimod.inv L M N, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
The left unitor as a bimodule isomorphism.
Equations
- M.leftUnitorBimod = Bimod.isoOfIso { hom := Bimod.LeftUnitorBimod.hom M, inv := Bimod.LeftUnitorBimod.inv M, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
The right unitor as a bimodule isomorphism.
Equations
- M.rightUnitorBimod = Bimod.isoOfIso { hom := Bimod.RightUnitorBimod.hom M, inv := Bimod.RightUnitorBimod.inv M, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.
Equations
- One or more equations did not get rendered due to their size.