Documentation

Mathlib.CategoryTheory.Groupoid.Subgroupoid

Subgroupoid #

This file defines subgroupoids as structures containing the subsets of arrows and their stability under composition and inversion. Also defined are:

Main definitions #

Given a type C with associated groupoid C instance.

Implementation details #

The structure of this file is copied from/inspired by Mathlib/GroupTheory/Subgroup/Basic.lean and Mathlib/Combinatorics/SimpleGraph/Subgraph.lean.

TODO #

Tags #

category theory, groupoid, subgroupoid

structure CategoryTheory.Subgroupoid (C : Type u) [Groupoid C] :
Type (max u u_1)

A sugroupoid of C consists of a choice of arrows for each pair of vertices, closed under composition and inverses.

theorem CategoryTheory.Subgroupoid.ext_iff {C : Type u} {inst✝ : Groupoid C} {x y : Subgroupoid C} :
theorem CategoryTheory.Subgroupoid.ext {C : Type u} {inst✝ : Groupoid C} {x y : Subgroupoid C} (arrows : x.arrows = y.arrows) :
x = y
theorem CategoryTheory.Subgroupoid.mul_mem_cancel_left {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d e : C} {f : c ⟢ d} {g : d ⟢ e} (hf : f ∈ S.arrows c d) :
theorem CategoryTheory.Subgroupoid.mul_mem_cancel_right {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d e : C} {f : c ⟢ d} {g : d ⟢ e} (hg : g ∈ S.arrows d e) :

The vertices of C on which S has non-trivial isotropy

Equations
theorem CategoryTheory.Subgroupoid.mem_objs_of_src {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
theorem CategoryTheory.Subgroupoid.mem_objs_of_tgt {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
theorem CategoryTheory.Subgroupoid.id_mem_of_src {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :
theorem CategoryTheory.Subgroupoid.id_mem_of_tgt {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : C} {f : c ⟢ d} (h : f ∈ S.arrows c d) :

A subgroupoid seen as a quiver on vertex set C

Equations

The coercion of a subgroupoid as a groupoid

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Subgroupoid.coe_comp_coe {C : Type u} [Groupoid C] (S : Subgroupoid C) {X✝ Y✝ Z✝ : ↑S.objs} (p : ↑(S.arrows ↑X✝ ↑Y✝)) (q : ↑(S.arrows ↑Y✝ ↑Z✝)) :
↑(CategoryStruct.comp p q) = CategoryStruct.comp ↑p ↑q
theorem CategoryTheory.Subgroupoid.coe_inv_coe {C : Type u} [Groupoid C] (S : Subgroupoid C) {X✝ Y✝ : ↑S.objs} (p : ↑(S.arrows ↑X✝ ↑Y✝)) :
↑(Groupoid.inv p) = Groupoid.inv ↑p
@[simp]
theorem CategoryTheory.Subgroupoid.coe_inv_coe' {C : Type u} [Groupoid C] (S : Subgroupoid C) {c d : ↑S.objs} (p : c ⟢ d) :
↑(inv p) = inv ↑p

The embedding of the coerced subgroupoid to its parent

Equations
  • S.hom = { obj := fun (c : ↑S.objs) => ↑c, map := fun {X Y : ↑S.objs} (f : X ⟢ Y) => ↑f, map_id := β‹―, map_comp := β‹― }
theorem CategoryTheory.Subgroupoid.hom.faithful {C : Type u} [Groupoid C] (S : Subgroupoid C) (c d : ↑S.objs) :
Function.Injective fun (f : c ⟢ d) => S.hom.map f

The subgroup of the vertex group at c given by the subgroupoid

Equations
def CategoryTheory.Subgroupoid.toSet {C : Type u} [Groupoid C] (S : Subgroupoid C) :
Set ((c : C) Γ— (d : C) Γ— (c ⟢ d))

The set of all arrows of a subgroupoid, as a set in Σ c d : C, c ⟢ d.

Equations
theorem CategoryTheory.Subgroupoid.mem_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) (F : (c : C) Γ— (d : C) Γ— (c ⟢ d)) :
theorem CategoryTheory.Subgroupoid.le_iff {C : Type u} [Groupoid C] (S T : Subgroupoid C) :
S ≀ T ↔ βˆ€ {c d : C}, S.arrows c d βŠ† T.arrows c d
Equations
theorem CategoryTheory.Subgroupoid.mem_top {C : Type u} [Groupoid C] {c d : C} (f : c ⟢ d) :
Equations
Equations
Equations
theorem CategoryTheory.Subgroupoid.mem_sInf_arrows {C : Type u} [Groupoid C] {s : Set (Subgroupoid C)} {c d : C} {p : c ⟢ d} :
p ∈ (sInf s).arrows c d ↔ βˆ€ S ∈ s, p ∈ S.arrows c d
theorem CategoryTheory.Subgroupoid.mem_sInf {C : Type u} [Groupoid C] {s : Set (Subgroupoid C)} {p : (c : C) Γ— (d : C) Γ— (c ⟢ d)} :
p ∈ sInf s ↔ βˆ€ S ∈ s, p ∈ S
Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Subgroupoid.inclusion {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) :
Functor ↑S.objs ↑T.objs

The functor associated to the embedding of subgroupoids

Equations
theorem CategoryTheory.Subgroupoid.inclusion_faithful {C : Type u} [Groupoid C] {S T : Subgroupoid C} (h : S ≀ T) (s t : ↑S.objs) :
Function.Injective fun (f : s ⟢ t) => (inclusion h).map f
theorem CategoryTheory.Subgroupoid.inclusion_trans {C : Type u} [Groupoid C] {R S T : Subgroupoid C} (k : R ≀ S) (h : S ≀ T) :
inductive CategoryTheory.Subgroupoid.Discrete.Arrows {C : Type u} [Groupoid C] (c d : C) :
(c ⟢ d) β†’ Prop

The family of arrows of the discrete groupoid

The only arrows of the discrete groupoid are the identity arrows.

Equations
theorem CategoryTheory.Subgroupoid.mem_discrete_iff {C : Type u} [Groupoid C] {c d : C} (f : c ⟢ d) :
f ∈ discrete.arrows c d ↔ βˆƒ (h : c = d), f = eqToHom h

A subgroupoid is wide if its carrier set is all of C.

theorem CategoryTheory.Subgroupoid.IsWide.eqToHom_mem {C : Type u} [Groupoid C] {S : Subgroupoid C} (Sw : S.IsWide) {c d : C} (h : c = d) :
structure CategoryTheory.Subgroupoid.IsNormal {C : Type u} [Groupoid C] (S : Subgroupoid C) extends S.IsWide :

A subgroupoid is normal if it is wide and satisfies the expected stability under conjugacy.

theorem CategoryTheory.Subgroupoid.IsNormal.conj' {C : Type u} [Groupoid C] {S : Subgroupoid C} (Sn : S.IsNormal) {c d : C} (p : d ⟢ c) {γ : c ⟢ c} :
theorem CategoryTheory.Subgroupoid.IsNormal.conjugation_bij {C : Type u} [Groupoid C] (S : Subgroupoid C) (Sn : S.IsNormal) {c d : C} (p : c ⟢ d) :
Set.BijOn (fun (γ : c ⟢ c) => CategoryStruct.comp (Groupoid.inv p) (CategoryStruct.comp γ p)) (S.arrows c c) (S.arrows d d)
theorem CategoryTheory.Subgroupoid.sInf_isNormal {C : Type u} [Groupoid C] (s : Set (Subgroupoid C)) (sn : βˆ€ S ∈ s, S.IsNormal) :
def CategoryTheory.Subgroupoid.generated {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) :

The subgropoid generated by the set of arrows X

Equations
theorem CategoryTheory.Subgroupoid.subset_generated {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) (c d : C) :
X c d βŠ† (generated X).arrows c d
def CategoryTheory.Subgroupoid.generatedNormal {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) :

The normal sugroupoid generated by the set of arrows X

Equations
theorem CategoryTheory.Subgroupoid.IsNormal.generatedNormal_le {C : Type u} [Groupoid C] (X : (c d : C) β†’ Set (c ⟢ d)) {S : Subgroupoid C} (Sn : S.IsNormal) :
generatedNormal X ≀ S ↔ βˆ€ (c d : C), X c d βŠ† S.arrows c d
def CategoryTheory.Subgroupoid.comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (S : Subgroupoid D) :

A functor between groupoid defines a map of subgroupoids in the reverse direction by taking preimages.

Equations
theorem CategoryTheory.Subgroupoid.comap_mono {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (S T : Subgroupoid D) :
S ≀ T β†’ comap Ο† S ≀ comap Ο† T
theorem CategoryTheory.Subgroupoid.isNormal_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {S : Subgroupoid D} (Sn : S.IsNormal) :
(comap Ο† S).IsNormal
@[simp]
theorem CategoryTheory.Subgroupoid.comap_comp {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {E : Type u_2} [Groupoid E] (ψ : Functor D E) :
comap (Ο†.comp ψ) = comap Ο† ∘ comap ψ
def CategoryTheory.Subgroupoid.ker {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) :

The kernel of a functor between subgroupoid is the preimage.

Equations
theorem CategoryTheory.Subgroupoid.mem_ker_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {c d : C} (f : c ⟢ d) :
f ∈ (ker Ο†).arrows c d ↔ βˆƒ (h : Ο†.obj c = Ο†.obj d), Ο†.map f = eqToHom h
theorem CategoryTheory.Subgroupoid.ker_isNormal {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) :
(ker Ο†).IsNormal
@[simp]
theorem CategoryTheory.Subgroupoid.ker_comp {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) {E : Type u_2} [Groupoid E] (ψ : Functor D E) :
ker (Ο†.comp ψ) = comap Ο† (ker ψ)
inductive CategoryTheory.Subgroupoid.Map.Arrows {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) (c d : D) :
(c ⟢ d) β†’ Prop

The family of arrows of the image of a subgroupoid under a functor injective on objects

theorem CategoryTheory.Subgroupoid.Map.arrows_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (S : Subgroupoid C) {c d : D} (f : c ⟢ d) :
Arrows Ο† hΟ† S c d f ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d) (_ : g ∈ S.arrows a b), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
def CategoryTheory.Subgroupoid.map {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) :

The "forward" image of a subgroupoid under a functor injective on objects

Equations
theorem CategoryTheory.Subgroupoid.mem_map_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (S : Subgroupoid C) {c d : D} (f : c ⟢ d) :
f ∈ (map Ο† hΟ† S).arrows c d ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d) (_ : g ∈ S.arrows a b), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
theorem CategoryTheory.Subgroupoid.galoisConnection_map_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :
GaloisConnection (map φ hφ) (comap φ)
theorem CategoryTheory.Subgroupoid.map_mono {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S T : Subgroupoid C) :
S ≀ T β†’ map Ο† hΟ† S ≀ map Ο† hΟ† T
theorem CategoryTheory.Subgroupoid.le_comap_map {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) :
S ≀ comap Ο† (map Ο† hΟ† S)
theorem CategoryTheory.Subgroupoid.map_comap_le {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (T : Subgroupoid D) :
map Ο† hΟ† (comap Ο† T) ≀ T
theorem CategoryTheory.Subgroupoid.map_le_iff_le_comap {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (S : Subgroupoid C) (T : Subgroupoid D) :
map Ο† hΟ† S ≀ T ↔ S ≀ comap Ο† T
theorem CategoryTheory.Subgroupoid.mem_map_objs_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (d : D) :
d ∈ (map Ο† hΟ† S).objs ↔ βˆƒ c ∈ S.objs, Ο†.obj c = d
@[simp]
theorem CategoryTheory.Subgroupoid.map_objs_eq {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :
(map φ hφ S).objs = φ.obj '' S.objs
def CategoryTheory.Subgroupoid.im {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) :

The image of a functor injective on objects

Equations
theorem CategoryTheory.Subgroupoid.mem_im_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) {c d : D} (f : c ⟢ d) :
f ∈ (im Ο† hΟ†).arrows c d ↔ βˆƒ (a : C) (b : C) (g : a ⟢ b) (ha : Ο†.obj a = c) (hb : Ο†.obj b = d), f = CategoryStruct.comp (eqToHom β‹―) (CategoryStruct.comp (Ο†.map g) (eqToHom hb))
theorem CategoryTheory.Subgroupoid.mem_im_objs_iff {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (φ : Functor C D) (hφ : Function.Injective φ.obj) (d : D) :
d ∈ (im Ο† hΟ†).objs ↔ βˆƒ (c : C), Ο†.obj c = d
theorem CategoryTheory.Subgroupoid.obj_surjective_of_im_eq_top {C : Type u} [Groupoid C] {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (hΟ†' : im Ο† hΟ† = ⊀) :
theorem CategoryTheory.Subgroupoid.isNormal_map {C : Type u} [Groupoid C] (S : Subgroupoid C) {D : Type u_1} [Groupoid D] (Ο† : Functor C D) (hΟ† : Function.Injective Ο†.obj) (hΟ†' : im Ο† hΟ† = ⊀) (Sn : S.IsNormal) :
(map φ hφ S).IsNormal
@[reducible, inline]

A subgroupoid is thin (CategoryTheory.Subgroupoid.IsThin) if it has at most one arrow between any two vertices.

Equations
theorem CategoryTheory.Subgroupoid.isThin_iff {C : Type u} [Groupoid C] (S : Subgroupoid C) :
S.IsThin ↔ βˆ€ (c : ↑S.objs), Subsingleton ↑(S.arrows ↑c ↑c)
@[reducible, inline]

A subgroupoid IsTotallyDisconnected if it has only isotropy arrows.

Equations

The isotropy subgroupoid of S

Equations

The full subgroupoid on a set D : Set C

Equations
@[simp]
theorem CategoryTheory.Subgroupoid.mem_full_iff {C : Type u} [Groupoid C] (D : Set C) {c d : C} {f : c ⟢ d} :
@[simp]
theorem CategoryTheory.Subgroupoid.full_arrow_eq_iff {C : Type u} [Groupoid C] (D : Set C) {c d : ↑(full D).objs} {f g : c ⟢ d} :
f = g ↔ ↑f = ↑g