Documentation

Mathlib.CategoryTheory.GradedObject.Single

The graded object in a single degree #

In this file, we define the functor GradedObject.single j : C ⥤ GradedObject J C which sends an object X : C to the graded object which is X in degree j and the initial object of C in other degrees.

noncomputable def CategoryTheory.GradedObject.single {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) :

The functor which sends X : C to the graded object which is X in degree j and the initial object in other degrees.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

The functor which sends X : C to the graded object which is X in degree 0 and the initial object in nonzero degrees.

Equations
noncomputable def CategoryTheory.GradedObject.singleObjApplyIsoOfEq {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) (i : J) (h : i = j) :
(single j).obj X i X

The canonical isomorphism (single j).obj X i ≅ X when i = j.

Equations
@[reducible, inline]
noncomputable abbrev CategoryTheory.GradedObject.singleObjApplyIso {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) :
(single j).obj X j X

The canonical isomorphism (single j).obj X j ≅ X.

Equations
noncomputable def CategoryTheory.GradedObject.isInitialSingleObjApply {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) (i : J) (h : i j) :

The object (single j).obj X i is initial when i ≠ j.

Equations

The composition of the single functor single j : C ⥤ GradedObject J C and the evaluation functor eval j identifies to the identity functor.

Equations