Documentation

Mathlib.CategoryTheory.Functor.KanExtension.Adjunction

The Kan extension functor #

Given a functor L : C ⥤ D, we define the left Kan extension functor L.lan : (C ⥤ H) ⥤ (D ⥤ H) which sends a functor F : C ⥤ H to its left Kan extension along L. This is defined if all F have such a left Kan extension. It is shown that L.lan is the left adjoint to the functor (D ⥤ H) ⥤ (C ⥤ H) given by the precomposition with L (see Functor.lanAdjunction).

Similarly, we define the right Kan extension functor L.ran : (C ⥤ H) ⥤ (D ⥤ H) which sends a functor F : C ⥤ H to its right Kan extension along L.

noncomputable def CategoryTheory.Functor.lan {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasLeftKanExtension F] :
Functor (Functor C H) (Functor D H)

The left Kan extension functor (C ⥤ H) ⥤ (D ⥤ H) along a functor C ⥤ D.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def CategoryTheory.Functor.lanUnit {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasLeftKanExtension F] :

The natural transformation F ⟶ L ⋙ (L.lan).obj G.

Equations

If a left Kan extension is pointwise, then evaluating it at an object is isomorphic to taking a colimit.

Equations

The left Kan extension of F : C ⥤ H along a functor L : C ⥤ D is isomorphic to the fiberwise colimit of the projection functor on the Grothendieck construction of the costructured arrow category composed with F.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def CategoryTheory.Functor.lanAdjunction {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (H : Type u_3) [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasLeftKanExtension F] :

The left Kan extension functor L.Lan is left adjoint to the precomposition by L.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.lanUnit_app_app_lanAdjunction_counit_app_app_assoc {C : Type u_1} {D : Type u_2} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_5, u_3} H] [∀ (F : Functor C H), L.HasLeftKanExtension F] (G : Functor D H) (X : C) {Z : H} (h : G.obj (L.obj X) Z) :

Composing the left Kan extension of L : C ⥤ D with colim on shapes D is isomorphic to colim on shapes C.

Equations

If G : C ⥤ H admits a left Kan extension along a functor L : C ⥤ D and H has colimits of shape C and D, then the colimit of G is isomorphic to the colimit of a canonical functor Grothendieck (CostructuredArrow.functor L) ⥤ H induced by L and G.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def CategoryTheory.Functor.ran {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasRightKanExtension F] :
Functor (Functor C H) (Functor D H)

The right Kan extension functor (C ⥤ H) ⥤ (D ⥤ H) along a functor C ⥤ D.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def CategoryTheory.Functor.ranCounit {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasRightKanExtension F] :

The natural transformation L ⋙ (L.lan).obj G ⟶ L.

Equations

If there exists a pointwise right Kan extension of F along L, then L.ran.obj G is a pointwise right Kan extension of F.

Equations
noncomputable def CategoryTheory.Functor.ranObjObjIsoLimit {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasRightKanExtension F] (F : Functor C H) [L.HasPointwiseRightKanExtension F] (X : D) :

If a right Kan extension is pointwise, then evaluating it at an object is isomorphic to taking a limit.

Equations
noncomputable def CategoryTheory.Functor.ranAdjunction {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (H : Type u_3) [Category.{u_6, u_3} H] [∀ (F : Functor C H), L.HasRightKanExtension F] :

The right Kan extension functor L.ran is right adjoint to the precomposition by L.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.ranCounit_app_app_ranAdjunction_unit_app_app_assoc {C : Type u_1} {D : Type u_2} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) {H : Type u_3} [Category.{u_5, u_3} H] [∀ (F : Functor C H), L.HasRightKanExtension F] (G : Functor D H) (X : C) {Z : H} (h : G.obj (L.obj X) Z) :

Composing the right Kan extension of L : C ⥤ D with lim on shapes D is isomorphic to lim on shapes C.

Equations