Ext groups in abelian categories #
Let C be an abelian category (with C : Type u and Category.{v} C).
In this file, we introduce the assumption HasExt.{w} C which asserts
that morphisms between single complexes in arbitrary degrees in
the derived category of C are w-small. Under this assumption,
we define Ext.{w} X Y n : Type w as shrunk versions of suitable
types of morphisms in the derived category. In particular, when C has
enough projectives or enough injectives, the property HasExt.{v} C
shall hold.
Note: in certain situations, w := v shall be the preferred
choice of universe (e.g. if C := ModuleCat.{v} R with R : Type v).
However, in the development of the API for Ext-groups, it is important
to keep a larger degree of generality for universes, as w < v
may happen in certain situations. Indeed, if X : Scheme.{u},
then the underlying category of the étale site of X shall be a large
category. However, the category Sheaf X.Etale AddCommGrp.{u}
shall have good properties (because there is a small category of affine
schemes with the same category of sheaves), and even though the type of
morphisms in Sheaf X.Etale AddCommGrp.{u} shall be
in Type (u + 1), these types are going to be u-small.
Then, for C := Sheaf X.etale AddCommGrp.{u}, we will have
Category.{u + 1} C, but HasExt.{u} C will hold
(as C has enough injectives). Then, the Ext groups between étale
sheaves over X shall be in Type u.
The property that morphisms between single complexes in arbitrary degrees are w-small
in the derived category.
Equations
- One or more equations did not get rendered due to their size.
A Ext-group in an abelian category C, defined as a Type w when [HasExt.{w} C].
Equations
- One or more equations did not get rendered due to their size.
When an instance of [HasDerivedCategory.{w'} C] is available, this is the bijection
between Ext.{w} X Y n and a type of morphisms in the derived category.
The morphism in the derived category which corresponds to an element in Ext X Y a.
Equations
The canonical map (X ⟶ Y) → Ext X Y 0.
Equations
- One or more equations did not get rendered due to their size.
The bijection Ext X Y 0 ≃ (X ⟶ Y).
The abelian group structure on Ext X Y n is defined by transporting the
abelian group structure on the constructed derived category
(given by HasDerivedCategory.standard). This constructed derived category
is used in order to obtain most of the compatibilities satisfied by
this abelian group structure. It is then shown that the bijection
homEquiv between Ext X Y n and Hom-types in the derived category
can be promoted to an additive equivalence for any [HasDerivedCategory C] instance.
The map from Ext X Y n to a ShiftedHom type in the constructed derived
category given by HasDerivedCategory.standard: this definition is introduced
only in order to prove properties of the abelian group structure on Ext-groups.
Do not use this definition: use the more general hom instead.
The additive bijection Ext X Y 0 ≃+ (X ⟶ Y).
Equations
- CategoryTheory.Abelian.Ext.addEquiv₀ = { toEquiv := CategoryTheory.Abelian.Ext.homEquiv₀, map_add' := ⋯ }
When an instance of [HasDerivedCategory.{w'} C] is available, this is the additive
bijection between Ext.{w} X Y n and a type of morphisms in the derived category.
Equations
- CategoryTheory.Abelian.Ext.homAddEquiv = { toEquiv := CategoryTheory.Abelian.Ext.homEquiv, map_add' := ⋯ }
The composition of Ext, as a bilinear map.
Equations
- One or more equations did not get rendered due to their size.
The postcomposition Ext X Y a →+ Ext X Z b with β : Ext Y Z n when a + n = b.
Equations
- β.postcomp X h = (CategoryTheory.Abelian.Ext.bilinearComp X Y Z a n b h).flip β
The precomposition Ext Y Z a →+ Ext X Z b with α : Ext X Y n when n + a = b.
Equations
- α.precomp Z h = (CategoryTheory.Abelian.Ext.bilinearComp X Y Z n a b h) α
Auxiliary definition for extFunctor.
Equations
- One or more equations did not get rendered due to their size.
The functor Cᵒᵖ ⥤ C ⥤ AddCommGrp which sends X : C and Y : C
to Ext X Y n.
Equations
- One or more equations did not get rendered due to their size.
Ext commutes with biproducts in its first variable.
Equations
- One or more equations did not get rendered due to their size.
Ext commutes with biproducts in its second variable.
Equations
- One or more equations did not get rendered due to their size.
Up to an equivalence, the type Ext.{w} X Y n does not depend on the universe w.