Documentation

Mathlib.Algebra.Category.CoalgCat.Basic

The category of coalgebras over a commutative ring #

We introduce the bundled category CoalgCat of coalgebras over a fixed commutative ring R along with the forgetful functor to ModuleCat.

This file mimics Mathlib/LinearAlgebra/QuadraticForm/QuadraticModuleCat.lean.

structure CoalgCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of R-coalgebras.

Equations
@[reducible, inline]
abbrev CoalgCat.of (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :

The object in the category of R-coalgebras associated to an R-coalgebra.

Equations
structure CoalgCat.Hom {R : Type u} [CommRing R] (V W : CoalgCat R) :

A type alias for CoalgHom to avoid confusion between the categorical and algebraic spellings of composition.

theorem CoalgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : CoalgCat R} {x y : V.Hom W} (toCoalgHom' : x.toCoalgHom' = y.toCoalgHom') :
x = y
theorem CoalgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : CoalgCat R} {x y : V.Hom W} :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev CoalgCat.Hom.toCoalgHom {R : Type u} [CommRing R] {X Y : CoalgCat R} (f : X.Hom Y) :

Turn a morphism in CoalgCat back into a CoalgHom.

Equations
@[reducible, inline]
abbrev CoalgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (f : X →ₗc[R] Y) :
of R X of R Y

Typecheck a CoalgHom as a morphism in CoalgCat R.

Equations
theorem CoalgCat.hom_ext {R : Type u} [CommRing R] {M N : CoalgCat R} (f g : M N) (h : Hom.toCoalgHom f = Hom.toCoalgHom g) :
f = g
theorem CoalgCat.hom_ext_iff {R : Type u} [CommRing R] {M N : CoalgCat R} {f g : M N} :
Equations
  • One or more equations did not get rendered due to their size.
def CoalgEquiv.toCoalgIso {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :

Build an isomorphism in the category CoalgCat R from a CoalgEquiv.

Equations
@[simp]
theorem CoalgEquiv.toCoalgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
@[simp]
theorem CoalgEquiv.toCoalgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
@[simp]
theorem CoalgEquiv.toCoalgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
@[simp]
theorem CoalgEquiv.toCoalgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z] [Coalgebra R X] [Coalgebra R Y] [Coalgebra R Z] (e : X ≃ₗc[R] Y) (f : Y ≃ₗc[R] Z) :

Build a CoalgEquiv from an isomorphism in the category CoalgCat R.

Equations
@[simp]
theorem CategoryTheory.Iso.toCoalgEquiv_trans {R : Type u} [CommRing R] {X Y Z : CoalgCat R} (e : X Y) (f : Y Z) :