Documentation

Mathlib.CategoryTheory.Limits.Shapes.Products

Categorical (co)products #

This file defines (co)products as special cases of (co)limits.

A product is the categorical generalization of the object Π i, f i where f : ι → C. It is a limit cone over the diagram formed by f, implemented by converting f into a functor Discrete ι ⥤ C.

A coproduct is the dual concept.

Main definitions #

Each of these has a dual.

Implementation notes #

As with the other special shapes in the limits library, all the definitions here are given as abbreviations of the general statements for limits, so all the simp lemmas and theorems about general limits can be used.

@[reducible, inline]
abbrev CategoryTheory.Limits.Fan {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] (f : βC) :
Type (max (max w u) v)

A fan over f : β → C consists of a collection of maps from an object P to every f b.

Equations
@[reducible, inline]
abbrev CategoryTheory.Limits.Cofan {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] (f : βC) :
Type (max (max w u) v)

A cofan over f : β → C consists of a collection of maps from every f b to an object P.

Equations
def CategoryTheory.Limits.Fan.mk {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → P f b) :

A fan over f : β → C consists of a collection of maps from an object P to every f b.

Equations
@[simp]
theorem CategoryTheory.Limits.Fan.mk_π_app {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → P f b) (X : CategoryTheory.Discrete β) :
(CategoryTheory.Limits.Fan.mk P p).app X = p X.as
@[simp]
theorem CategoryTheory.Limits.Fan.mk_pt {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → P f b) :
def CategoryTheory.Limits.Cofan.mk {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → f b P) :

A cofan over f : β → C consists of a collection of maps from every f b to an object P.

Equations
@[simp]
theorem CategoryTheory.Limits.Cofan.mk_pt {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → f b P) :
@[simp]
theorem CategoryTheory.Limits.Cofan.mk_ι_app {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → f b P) (X : CategoryTheory.Discrete β) :
(CategoryTheory.Limits.Cofan.mk P p).app X = p X.as
def CategoryTheory.Limits.Fan.proj {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (p : CategoryTheory.Limits.Fan f) (j : β) :
p.pt f j

Get the jth "projection" in the fan. (Note that the initial letter of proj matches the greek letter in Cone.π.)

Equations
  • p.proj j = p.app { as := j }
def CategoryTheory.Limits.Cofan.inj {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (p : CategoryTheory.Limits.Cofan f) (j : β) :
f j p.pt

Get the jth "injection" in the cofan. (Note that the initial letter of inj matches the greek letter in Cocone.ι.)

Equations
  • p.inj j = p.app { as := j }
@[simp]
theorem CategoryTheory.Limits.fan_mk_proj {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → P f b) (j : β) :
@[simp]
theorem CategoryTheory.Limits.cofan_mk_inj {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (P : C) (p : (b : β) → f b P) (j : β) :
@[reducible, inline]

An abbreviation for HasLimit (Discrete.functor f).

Equations
@[reducible, inline]

An abbreviation for HasColimit (Discrete.functor f).

Equations
theorem CategoryTheory.Limits.hasCoproduct_of_equiv_of_iso {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] (f : αC) (g : βC) [CategoryTheory.Limits.HasCoproduct f] (e : β α) (iso : (j : β) → g j f (e j)) :
theorem CategoryTheory.Limits.hasProduct_of_equiv_of_iso {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] (f : αC) (g : βC) [CategoryTheory.Limits.HasProduct f] (e : β α) (iso : (j : β) → g j f (e j)) :
def CategoryTheory.Limits.mkFanLimit {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (t : CategoryTheory.Limits.Fan f) (lift : (s : CategoryTheory.Limits.Fan f) → s.pt t.pt) (fac : ∀ (s : CategoryTheory.Limits.Fan f) (j : β), CategoryTheory.CategoryStruct.comp (lift s) (t.proj j) = s.proj j := by aesop_cat) (uniq : ∀ (s : CategoryTheory.Limits.Fan f) (m : s.pt t.pt), (∀ (j : β), CategoryTheory.CategoryStruct.comp m (t.proj j) = s.proj j)m = lift s := by aesop_cat) :

Make a fan f into a limit fan by providing lift, fac, and uniq -- just a convenience lemma to avoid having to go through Discrete

Equations
@[simp]
theorem CategoryTheory.Limits.mkFanLimit_lift {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (t : CategoryTheory.Limits.Fan f) (lift : (s : CategoryTheory.Limits.Fan f) → s.pt t.pt) (fac : ∀ (s : CategoryTheory.Limits.Fan f) (j : β), CategoryTheory.CategoryStruct.comp (lift s) (t.proj j) = s.proj j := by aesop_cat) (uniq : ∀ (s : CategoryTheory.Limits.Fan f) (m : s.pt t.pt), (∀ (j : β), CategoryTheory.CategoryStruct.comp m (t.proj j) = s.proj j)m = lift s := by aesop_cat) (s : CategoryTheory.Limits.Fan f) :
(CategoryTheory.Limits.mkFanLimit t lift fac uniq).lift s = lift s
def CategoryTheory.Limits.Fan.IsLimit.desc {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {F : βC} {c : CategoryTheory.Limits.Fan F} (hc : CategoryTheory.Limits.IsLimit c) {A : C} (f : (i : β) → A F i) :
A c.pt

Constructor for morphisms to the point of a limit fan.

Equations
@[simp]
theorem CategoryTheory.Limits.Fan.IsLimit.hom_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {I : Type u_1} {F : IC} {c : CategoryTheory.Limits.Fan F} (hc : CategoryTheory.Limits.IsLimit c) {A : C} (f g : A c.pt) (h : ∀ (i : I), CategoryTheory.CategoryStruct.comp f (c.proj i) = CategoryTheory.CategoryStruct.comp g (c.proj i)) :
f = g
def CategoryTheory.Limits.mkCofanColimit {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (s : CategoryTheory.Limits.Cofan f) (desc : (t : CategoryTheory.Limits.Cofan f) → s.pt t.pt) (fac : ∀ (t : CategoryTheory.Limits.Cofan f) (j : β), CategoryTheory.CategoryStruct.comp (s.inj j) (desc t) = t.inj j := by aesop_cat) (uniq : ∀ (t : CategoryTheory.Limits.Cofan f) (m : s.pt t.pt), (∀ (j : β), CategoryTheory.CategoryStruct.comp (s.inj j) m = t.inj j)m = desc t := by aesop_cat) :

Make a cofan f into a colimit cofan by providing desc, fac, and uniq -- just a convenience lemma to avoid having to go through Discrete

Equations
@[simp]
theorem CategoryTheory.Limits.mkCofanColimit_desc {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} (s : CategoryTheory.Limits.Cofan f) (desc : (t : CategoryTheory.Limits.Cofan f) → s.pt t.pt) (fac : ∀ (t : CategoryTheory.Limits.Cofan f) (j : β), CategoryTheory.CategoryStruct.comp (s.inj j) (desc t) = t.inj j := by aesop_cat) (uniq : ∀ (t : CategoryTheory.Limits.Cofan f) (m : s.pt t.pt), (∀ (j : β), CategoryTheory.CategoryStruct.comp (s.inj j) m = t.inj j)m = desc t := by aesop_cat) (t : CategoryTheory.Limits.Cofan f) :
(CategoryTheory.Limits.mkCofanColimit s desc fac uniq).desc t = desc t
def CategoryTheory.Limits.Cofan.IsColimit.desc {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {F : βC} {c : CategoryTheory.Limits.Cofan F} (hc : CategoryTheory.Limits.IsColimit c) {A : C} (f : (i : β) → F i A) :
c.pt A

Constructor for morphisms from the point of a colimit cofan.

Equations
@[reducible, inline]

piObj f computes the product of a family of elements f. (It is defined as an abbreviation for limit (Discrete.functor f), so for most facts about piObj f, you will just use general facts about limits.)

Equations
@[reducible, inline]

sigmaObj f computes the coproduct of a family of elements f. (It is defined as an abbreviation for colimit (Discrete.functor f), so for most facts about sigmaObj f, you will just use general facts about colimits.)

Equations

notation for categorical products. We need to avoid conflict with Finset.prod.

Equations

notation for categorical coproducts

Equations
@[reducible, inline]

The b-th projection from the pi object over f has the form ∏ᶜ f ⟶ f b.

Equations
Instances For
@[reducible, inline]

The b-th inclusion into the sigma object over f has the form f b ⟶ ∐ f.

Equations
Instances For

The fan constructed of the projections from the product is limiting.

Equations
  • One or more equations did not get rendered due to their size.

The cofan constructed of the inclusions from the coproduct is colimiting.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev CategoryTheory.Limits.Pi.lift {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} [CategoryTheory.Limits.HasProduct f] {P : C} (p : (b : β) → P f b) :

A collection of morphisms P ⟶ f b induces a morphism P ⟶ ∏ᶜ f.

Equations
def CategoryTheory.Limits.Fan.ext {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Fan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), c₁.proj b = CategoryTheory.CategoryStruct.comp e.hom (c₂.proj b) := by aesop_cat) :
c₁ c₂

A version of Cones.ext for Fans.

Equations
@[simp]
theorem CategoryTheory.Limits.Fan.ext_inv_hom {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Fan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), c₁.proj b = CategoryTheory.CategoryStruct.comp e.hom (c₂.proj b) := by aesop_cat) :
(CategoryTheory.Limits.Fan.ext e w).inv.hom = e.inv
@[simp]
theorem CategoryTheory.Limits.Fan.ext_hom_hom {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Fan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), c₁.proj b = CategoryTheory.CategoryStruct.comp e.hom (c₂.proj b) := by aesop_cat) :
(CategoryTheory.Limits.Fan.ext e w).hom.hom = e.hom
@[reducible, inline]
abbrev CategoryTheory.Limits.Sigma.desc {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} [CategoryTheory.Limits.HasCoproduct f] {P : C} (p : (b : β) → f b P) :
f P

A collection of morphisms f b ⟶ P induces a morphism ∐ f ⟶ P.

Equations
Instances For
def CategoryTheory.Limits.Cofan.ext {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Cofan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), CategoryTheory.CategoryStruct.comp (c₁.inj b) e.hom = c₂.inj b := by aesop_cat) :
c₁ c₂

A version of Cocones.ext for Cofans.

Equations
@[simp]
theorem CategoryTheory.Limits.Cofan.ext_hom_hom {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Cofan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), CategoryTheory.CategoryStruct.comp (c₁.inj b) e.hom = c₂.inj b := by aesop_cat) :
@[simp]
theorem CategoryTheory.Limits.Cofan.ext_inv_hom {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : βC} {c₁ c₂ : CategoryTheory.Limits.Cofan f} (e : c₁.pt c₂.pt) (w : ∀ (b : β), CategoryTheory.CategoryStruct.comp (c₁.inj b) e.hom = c₂.inj b := by aesop_cat) :

A cofan c on f such that the induced map ∐ f ⟶ c.pt is an iso, is a coproduct.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.Cofan.isColimitTrans {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {X : αC} (c : CategoryTheory.Limits.Cofan X) (hc : CategoryTheory.Limits.IsColimit c) {β : αType u_1} {Y : (a : α) → β aC} (π : (a : α) → (b : β a) → Y a b X a) (hs : (a : α) → CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.Cofan.mk (X a) (π a))) :
CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.Cofan.mk c.pt fun (x : (a : α) × β a) => match x with | a, b => CategoryTheory.CategoryStruct.comp (π a b) (c.inj a))

A coproduct of coproducts is a coproduct

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]

Construct a morphism between categorical products (indexed by the same type) from a family of morphisms between the factors.

Equations
Instances For
def CategoryTheory.Limits.Pi.map' {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] (p : βα) (q : (b : β) → f (p b) g b) :

Construct a morphism between categorical products from a family of morphisms between the factors.

Equations
theorem CategoryTheory.Limits.Pi.map'_comp_map' {β : Type w} {α : Type w₂} {γ : Type w₃} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} {h : γC} [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] [CategoryTheory.Limits.HasProduct h] (p : βα) (p' : γβ) (q : (b : β) → f (p b) g b) (q' : (c : γ) → g (p' c) h c) :
theorem CategoryTheory.Limits.Pi.map'_eq {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] {p p' : βα} {q : (b : β) → f (p b) g b} {q' : (b : β) → f (p' b) g b} (hp : p = p') (hq : ∀ (b : β), CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ) (q b) = q' b) :
@[reducible, inline]
abbrev CategoryTheory.Limits.Pi.mapIso {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : βC} [CategoryTheory.Limits.HasProductsOfShape β C] (p : (b : β) → f b g b) :

Construct an isomorphism between categorical products (indexed by the same type) from a family of isomorphisms between the factors.

Equations
Equations
  • =

A limit cone for X : Discrete α ⥤ C that is given by ∏ᶜ (fun j => X.obj (Discrete.mk j)).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.Pi.cone_pt {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.Functor (CategoryTheory.Discrete α) C) [CategoryTheory.Limits.HasProduct fun (j : α) => X.obj { as := j }] :
(CategoryTheory.Limits.Pi.cone X).pt = ∏ᶜ fun (j : α) => X.obj { as := j }

The cone Pi.cone X is a limit cone.

Equations

The isomorphism ∏ᶜ (fun j => X.obj (Discrete.mk j)) ≅ limit X.

Equations
@[reducible, inline]

Construct a morphism between categorical coproducts (indexed by the same type) from a family of morphisms between the factors.

Equations
Instances For
def CategoryTheory.Limits.Sigma.map' {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : αβ) (q : (a : α) → f a g (p a)) :
f g

Construct a morphism between categorical coproducts from a family of morphisms between the factors.

Equations
theorem CategoryTheory.Limits.Sigma.map'_comp_map' {β : Type w} {α : Type w₂} {γ : Type w₃} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} {h : γC} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (p : αβ) (p' : βγ) (q : (a : α) → f a g (p a)) (q' : (b : β) → g b h (p' b)) :
theorem CategoryTheory.Limits.Sigma.map'_eq {β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : αC} {g : βC} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] {p p' : αβ} {q : (a : α) → f a g (p a)} {q' : (a : α) → f a g (p' a)} (hp : p = p') (hq : ∀ (a : α), CategoryTheory.CategoryStruct.comp (q a) (CategoryTheory.eqToHom ) = q' a) :
@[reducible, inline]
abbrev CategoryTheory.Limits.Sigma.mapIso {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : βC} [CategoryTheory.Limits.HasCoproductsOfShape β C] (p : (b : β) → f b g b) :
f g

Construct an isomorphism between categorical coproducts (indexed by the same type) from a family of isomorphisms between the factors.

Equations
Equations
  • =

A colimit cocone for X : Discrete α ⥤ C that is given by ∐ (fun j => X.obj (Discrete.mk j)).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.Sigma.cocone_pt {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.Functor (CategoryTheory.Discrete α) C) [CategoryTheory.Limits.HasCoproduct fun (j : α) => X.obj { as := j }] :
(CategoryTheory.Limits.Sigma.cocone X).pt = fun (j : α) => X.obj { as := j }

The cocone Sigma.cocone X is a colimit cocone.

Equations
  • One or more equations did not get rendered due to their size.

The isomorphism ∐ (fun j => X.obj (Discrete.mk j)) ≅ colimit X.

Equations
def CategoryTheory.Limits.Pi.whiskerEquiv {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type u_1} {K : Type u_2} {f : JC} {g : KC} (e : J K) (w : (j : J) → g (e j) f j) [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] :

Two products which differ by an equivalence in the indexing type, and up to isomorphism in the factors, are isomorphic.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.Pi.whiskerEquiv_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type u_1} {K : Type u_2} {f : JC} {g : KC} (e : J K) (w : (j : J) → g (e j) f j) [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] :
@[simp]
theorem CategoryTheory.Limits.Pi.whiskerEquiv_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type u_1} {K : Type u_2} {f : JC} {g : KC} (e : J K) (w : (j : J) → g (e j) f j) [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct g] :
def CategoryTheory.Limits.Sigma.whiskerEquiv {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type u_1} {K : Type u_2} {f : JC} {g : KC} (e : J K) (w : (j : J) → g (e j) f j) [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] :
f g

Two coproducts which differ by an equivalence in the indexing type, and up to isomorphism in the factors, are isomorphic.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.Sigma.whiskerEquiv_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type u_1} {K : Type u_2} {f : JC} {g : KC} (e : J K) (w : (j : J) → g (e j) f j) [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] :
@[simp]
instance CategoryTheory.Limits.instHasProductSigmaFstSndOfPiObj {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasProduct (g i)] [CategoryTheory.Limits.HasProduct fun (i : ι) => ∏ᶜ g i] :
CategoryTheory.Limits.HasProduct fun (p : (i : ι) × f i) => g p.fst p.snd
Equations
  • =
def CategoryTheory.Limits.piPiIso {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasProduct (g i)] [CategoryTheory.Limits.HasProduct fun (i : ι) => ∏ᶜ g i] :
(∏ᶜ fun (i : ι) => ∏ᶜ g i) ∏ᶜ fun (p : (i : ι) × f i) => g p.fst p.snd

An iterated product is a product over a sigma type.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.piPiIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasProduct (g i)] [CategoryTheory.Limits.HasProduct fun (i : ι) => ∏ᶜ g i] :
(CategoryTheory.Limits.piPiIso f g).hom = CategoryTheory.Limits.Pi.lift fun (x : (i : ι) × f i) => match x with | i, x => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Pi.π (fun (i : ι) => ∏ᶜ g i) i) (CategoryTheory.Limits.Pi.π (g i) x)
@[simp]
theorem CategoryTheory.Limits.piPiIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasProduct (g i)] [CategoryTheory.Limits.HasProduct fun (i : ι) => ∏ᶜ g i] :
(CategoryTheory.Limits.piPiIso f g).inv = CategoryTheory.Limits.Pi.lift fun (i : ι) => CategoryTheory.Limits.Pi.lift fun (x : f i) => CategoryTheory.Limits.Pi.π (fun (p : (i : ι) × f i) => g p.fst p.snd) i, x
instance CategoryTheory.Limits.instHasCoproductSigmaFstSndOfSigmaObj {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasCoproduct (g i)] [CategoryTheory.Limits.HasCoproduct fun (i : ι) => g i] :
CategoryTheory.Limits.HasCoproduct fun (p : (i : ι) × f i) => g p.fst p.snd
Equations
  • =
def CategoryTheory.Limits.sigmaSigmaIso {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasCoproduct (g i)] [CategoryTheory.Limits.HasCoproduct fun (i : ι) => g i] :
( fun (i : ι) => g i) fun (p : (i : ι) × f i) => g p.fst p.snd

An iterated coproduct is a coproduct over a sigma type.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.sigmaSigmaIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasCoproduct (g i)] [CategoryTheory.Limits.HasCoproduct fun (i : ι) => g i] :
(CategoryTheory.Limits.sigmaSigmaIso f g).inv = CategoryTheory.Limits.Sigma.desc fun (x : (i : ι) × f i) => match x with | i, x => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (g i) x) (CategoryTheory.Limits.Sigma.ι (fun (i : ι) => g i) i)
@[simp]
theorem CategoryTheory.Limits.sigmaSigmaIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {ι : Type u_1} (f : ιType u_2) (g : (i : ι) → f iC) [∀ (i : ι), CategoryTheory.Limits.HasCoproduct (g i)] [CategoryTheory.Limits.HasCoproduct fun (i : ι) => g i] :
(CategoryTheory.Limits.sigmaSigmaIso f g).hom = CategoryTheory.Limits.Sigma.desc fun (i : ι) => CategoryTheory.Limits.Sigma.desc fun (x : f i) => CategoryTheory.Limits.Sigma.ι (fun (p : (i : ι) × f i) => g p.fst p.snd) i, x
def CategoryTheory.Limits.piComparison {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (G : CategoryTheory.Functor C D) (f : βC) [CategoryTheory.Limits.HasProduct f] [CategoryTheory.Limits.HasProduct fun (b : β) => G.obj (f b)] :
G.obj (∏ᶜ f) ∏ᶜ fun (b : β) => G.obj (f b)

The comparison morphism for the product of f. This is an iso iff G preserves the product of f, see PreservesProduct.ofIsoComparison.

Equations
def CategoryTheory.Limits.sigmaComparison {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (G : CategoryTheory.Functor C D) (f : βC) [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct fun (b : β) => G.obj (f b)] :
( fun (b : β) => G.obj (f b)) G.obj ( f)

The comparison morphism for the coproduct of f. This is an iso iff G preserves the coproduct of f, see PreservesCoproduct.ofIsoComparison.

Equations
@[reducible, inline]

An abbreviation for Π J, HasLimitsOfShape (Discrete J) C

Equations
@[reducible, inline]

An abbreviation for Π J, HasColimitsOfShape (Discrete J) C

Equations

(Co)products over a type with a unique term.

The limit cone for the product over an index type with exactly one term.

Equations
  • One or more equations did not get rendered due to their size.
@[instance 100]
Equations
  • =
def CategoryTheory.Limits.productUniqueIso {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] [Unique β] (f : βC) :
∏ᶜ f f default

A product over an index type with exactly one term is just the object over that term.

Equations

The colimit cocone for the coproduct over an index type with exactly one term.

Equations
  • One or more equations did not get rendered due to their size.
@[instance 100]
Equations
  • =
def CategoryTheory.Limits.coproductUniqueIso {β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] [Unique β] (f : βC) :
f f default

A coproduct over an index type with exactly one term is just the object over that term.

Equations
  • One or more equations did not get rendered due to their size.

Reindex a categorical product via an equivalence of the index types.

Equations
  • One or more equations did not get rendered due to their size.

Reindex a categorical coproduct via an equivalence of the index types.

Equations
  • One or more equations did not get rendered due to their size.