Functors #
Defines a functor between categories, extending a Prefunctor
between quivers.
Introduces, in the CategoryTheory
scope, notations C ⥤ D
for the type of all functors
from C
to D
, 𝟭
for the identity functor and ⋙
for functor composition.
TODO: Switch to using the ⇒
arrow.
Functor C D
represents a functor between categories C
and D
.
To apply a functor F
to an object use F.obj X
, and to a morphism use F.map f
.
The axiom map_id
expresses preservation of identities, and
map_comp
expresses functoriality.
See https://stacks.math.columbia.edu/tag/001B.
- obj : C → D
- map_id : ∀ (X : C), self.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (self.obj X)
A functor preserves identity morphisms.
- map_comp : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), self.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (self.map f) (self.map g)
A functor preserves composition.
Instances For
- CategoryTheory.Functor.category
- CategoryTheory.Functor.instInhabited
- CategoryTheory.Limits.HasZeroObject.instFunctor
- CategoryTheory.Limits.functorCategoryHasColimitsOfShape
- CategoryTheory.Limits.functorCategoryHasColimitsOfSize
- CategoryTheory.Limits.functorCategoryHasLimitsOfShape
- CategoryTheory.Limits.functorCategoryHasLimitsOfSize
- CategoryTheory.Limits.instHasZeroMorphismsFunctor
Notation for a functor between categories.
Equations
- CategoryTheory.«term_⥤_» = Lean.ParserDescr.trailingNode `CategoryTheory.«term_⥤_» 26 27 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⥤ ") (Lean.ParserDescr.cat `term 26))
𝟭 C
is the identity functor on a category C
.
Equations
- CategoryTheory.Functor.id C = { obj := fun (X : C) => X, map := fun {X Y : C} (f : X ⟶ Y) => f, map_id := ⋯, map_comp := ⋯ }
Instances For
- CategoryTheory.Functor.Faithful.id
- CategoryTheory.Functor.Full.id
- CategoryTheory.Functor.LaxMonoidal.id
- CategoryTheory.Functor.Monoidal.instId
- CategoryTheory.Functor.OplaxMonoidal.id
- CategoryTheory.Functor.instEssSurjId
- CategoryTheory.Functor.isEquivalence_refl
- CategoryTheory.Limits.id_preservesColimitsOfSize
- CategoryTheory.Limits.id_preservesLimitsOfSize
- CategoryTheory.Limits.id_reflectsColimits
- CategoryTheory.Limits.id_reflectsLimits
- CategoryTheory.idCreatesColimits
- CategoryTheory.idCreatesLimits
- CategoryTheory.instIsCorepresentableIdType
Notation for the identity functor on a category.
Equations
- CategoryTheory.«term𝟭» = Lean.ParserDescr.node `CategoryTheory.«term𝟭» 1024 (Lean.ParserDescr.symbol "𝟭")
Equations
- CategoryTheory.Functor.instInhabited C = { default := CategoryTheory.Functor.id C }
F ⋙ G
is the composition of a functor F
and a functor G
(F
first, then G
).
Equations
Instances For
- CategoryTheory.Functor.Faithful.comp
- CategoryTheory.Functor.Full.comp
- CategoryTheory.Functor.LaxMonoidal.comp
- CategoryTheory.Functor.Monoidal.instComp
- CategoryTheory.Functor.OplaxMonoidal.comp
- CategoryTheory.Functor.essSurj_comp
- CategoryTheory.Functor.isEquivalence_trans
- CategoryTheory.Functor.isLeftAdjoint_comp
- CategoryTheory.Functor.isRightAdjoint_comp
- CategoryTheory.Functor.preservesEpimorphisms_comp
- CategoryTheory.Functor.preservesMonomorphisms_comp
- CategoryTheory.Functor.preservesZeroMorphisms_comp
- CategoryTheory.Functor.reflectsEpimorphisms_comp
- CategoryTheory.Functor.reflectsMonomorphisms_comp
- CategoryTheory.Limits.comp_preservesColimit
- CategoryTheory.Limits.comp_preservesColimits
- CategoryTheory.Limits.comp_preservesColimitsOfShape
- CategoryTheory.Limits.comp_preservesLimit
- CategoryTheory.Limits.comp_preservesLimits
- CategoryTheory.Limits.comp_preservesLimitsOfShape
- CategoryTheory.Limits.comp_reflectsColimit
- CategoryTheory.Limits.comp_reflectsColimits
- CategoryTheory.Limits.comp_reflectsColimitsOfShape
- CategoryTheory.Limits.comp_reflectsLimit
- CategoryTheory.Limits.comp_reflectsLimits
- CategoryTheory.Limits.comp_reflectsLimitsOfShape
- CategoryTheory.Limits.hasColimitCompEvaluation
- CategoryTheory.Limits.hasColimit_equivalence_comp
- CategoryTheory.Limits.hasLimitCompEvalution
- CategoryTheory.Limits.hasLimitEquivalenceComp
- CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
- CategoryTheory.Limits.instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor
- CategoryTheory.Limits.instHasLimitCompOfPreservesLimit
- CategoryTheory.Limits.instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor
- CategoryTheory.compCreatesColimit
- CategoryTheory.compCreatesColimits
- CategoryTheory.compCreatesColimitsOfShape
- CategoryTheory.compCreatesLimit
- CategoryTheory.compCreatesLimits
- CategoryTheory.compCreatesLimitsOfShape
- CategoryTheory.reflectsIsomorphisms_comp
Notation for composition of functors.
Equations
- CategoryTheory.«term_⋙_» = Lean.ParserDescr.trailingNode `CategoryTheory.«term_⋙_» 80 81 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⋙ ") (Lean.ParserDescr.cat `term 80))