Documentation

Std.Tactic.BVDecide.LRAT.Internal.LRATCheckerSound

theorem Std.Tactic.BVDecide.LRAT.Internal.addRatCaseSound {α : Type u_1} {β : Type u_2} {σ : Type u_3} [DecidableEq α] [Std.Tactic.BVDecide.LRAT.Internal.Clause α β] [Std.Tactic.BVDecide.LRAT.Internal.Entails α σ] [Std.Tactic.BVDecide.LRAT.Internal.Formula α β σ] (f : σ) (f_readyForRupAdd : Std.Tactic.BVDecide.LRAT.Internal.Formula.ReadyForRupAdd f) (f_readyForRatAdd : Std.Tactic.BVDecide.LRAT.Internal.Formula.ReadyForRatAdd f) (c : β) (pivot : Std.Sat.Literal α) (f' : σ) (rupHints : Array Nat) (ratHints : Array (Nat × Array Nat)) (pivot_limplies_c : Std.Tactic.BVDecide.LRAT.Internal.Limplies α pivot c) (heq : Std.Tactic.BVDecide.LRAT.Internal.Formula.performRatAdd f c pivot rupHints ratHints = (f', true)) (restPrf : List (Std.Tactic.BVDecide.LRAT.Action β α)) (restPrfWellFormed : ∀ (a : Std.Tactic.BVDecide.LRAT.Action β α), a restPrfStd.Tactic.BVDecide.LRAT.Internal.WellFormedAction a) (ih : ∀ (f : σ), Std.Tactic.BVDecide.LRAT.Internal.Formula.ReadyForRupAdd fStd.Tactic.BVDecide.LRAT.Internal.Formula.ReadyForRatAdd f(∀ (a : Std.Tactic.BVDecide.LRAT.Action β α), a restPrfStd.Tactic.BVDecide.LRAT.Internal.WellFormedAction a)Std.Tactic.BVDecide.LRAT.Internal.lratChecker f restPrf = Std.Tactic.BVDecide.LRAT.Internal.Result.successStd.Tactic.BVDecide.LRAT.Internal.Unsatisfiable α f) (f'_success : Std.Tactic.BVDecide.LRAT.Internal.lratChecker f' restPrf = Std.Tactic.BVDecide.LRAT.Internal.Result.success) :