This invariant ensures that we only insert an atom at most once and with a monotonically increasing index.
- empty: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α], Std.Sat.AIG.RelabelNat.State.Inv1 0 ∅
- insert: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {n : Nat} {map : Std.HashMap α Nat} {x : α}, Std.Sat.AIG.RelabelNat.State.Inv1 n map → map[x]? = none → Std.Sat.AIG.RelabelNat.State.Inv1 (n + 1) (map.insert x n)
Instances For
If a HashMap fulfills Inv1
it is in an injection.
This invariant says that we have already visited and inserted all nodes up to a certain index.
- empty: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {decls : Array (Std.Sat.AIG.Decl α)}, Std.Sat.AIG.RelabelNat.State.Inv2 decls 0 ∅
- newAtom: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} {map : Std.HashMap α Nat} {a : α} {val : Nat}, Std.Sat.AIG.RelabelNat.State.Inv2 decls idx map → ∀ (hlt : idx < decls.size), decls[idx] = Std.Sat.AIG.Decl.atom a → map[a]? = none → Std.Sat.AIG.RelabelNat.State.Inv2 decls (idx + 1) (map.insert a val)
- oldAtom: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} {map : Std.HashMap α Nat} {a : α} {n : Nat}, Std.Sat.AIG.RelabelNat.State.Inv2 decls idx map → ∀ (hlt : idx < decls.size), decls[idx] = Std.Sat.AIG.Decl.atom a → map[a]? = some n → Std.Sat.AIG.RelabelNat.State.Inv2 decls (idx + 1) map
- const: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} {map : Std.HashMap α Nat} {b : Bool}, Std.Sat.AIG.RelabelNat.State.Inv2 decls idx map → ∀ (hlt : idx < decls.size), decls[idx] = Std.Sat.AIG.Decl.const b → Std.Sat.AIG.RelabelNat.State.Inv2 decls (idx + 1) map
- gate: ∀ {α : Type} [inst : DecidableEq α] [inst_1 : Hashable α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} {map : Std.HashMap α Nat} {l r : Nat} {li ri : Bool}, Std.Sat.AIG.RelabelNat.State.Inv2 decls idx map → ∀ (hlt : idx < decls.size), decls[idx] = Std.Sat.AIG.Decl.gate l r li ri → Std.Sat.AIG.RelabelNat.State.Inv2 decls (idx + 1) map
Instances For
The key property provided by Inv2
, if we have Inv2
at a certain index, then all atoms below
that index have been inserted into the HashMap
.
The invariant carrying state structure for building the HashMap
that translates from arbitrary
atom identifiers to Nat
.
- max : Nat
The next number to use for identifying an atom.
- map : Std.HashMap α Nat
The translation
HashMap
- inv1 : Std.Sat.AIG.RelabelNat.State.Inv1 self.max self.map
Proof that we never reuse a number.
- inv2 : Std.Sat.AIG.RelabelNat.State.Inv2 decls idx self.map
Proof that we inserted all atoms until
idx
.
Instances For
Proof that we never reuse a number.
Proof that we inserted all atoms until idx
.
The basic initial state.
Instances For
Insert a Decl.atom
into the State
structure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Insert a Decl.const
into the State
structure.
Equations
- state.addConst b h = { max := state.max, map := state.map, inv1 := ⋯, inv2 := ⋯ }
Instances For
Insert a Decl.gate
into the State
structure.
Equations
- state.addGate lhs rhs linv rinv h = { max := state.max, map := state.map, inv1 := ⋯, inv2 := ⋯ }
Instances For
Build up a State
that has all atoms of an AIG
inserted.
Equations
- Std.Sat.AIG.RelabelNat.State.ofAIGAux aig = Std.Sat.AIG.RelabelNat.State.ofAIGAux.go aig.decls 0 Std.Sat.AIG.RelabelNat.State.empty
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Obtain the atom mapping from α to Nat
for a given AIG
.
Equations
Instances For
Assuming that we find a Nat
for an atom in the ofAIG
map, that Nat
is unique in the map.
We will find a Nat
for every atom in the AIG
that the ofAIG
map was built from.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Map an AIG
with arbitrary atom identifiers to one that uses Nat
as atom identifiers. This is
useful for preparing an AIG
for CNF translation if it doesn't already use Nat
identifiers.
Equations
- aig.relabelNat = aig.relabelNat'.fst
Instances For
relabelNat
preserves unsatisfiablility.
Equations
- entry.relabelNat' = ({ aig := entry.aig.relabelNat'.fst, ref := let __src := entry.ref; { gate := __src.gate, hgate := ⋯ } }, entry.aig.relabelNat'.snd)
Instances For
Map an Entrypoint
with arbitrary atom identifiers to one that uses Nat
as atom identifiers.
This is useful for preparing an AIG
for CNF translation if it doesn't already use Nat
identifiers.
Equations
- entry.relabelNat = { aig := entry.aig.relabelNat, ref := let __src := entry.ref; { gate := __src.gate, hgate := ⋯ } }
Instances For
relabelNat
preserves unsatisfiablility.