Hash set lemmas #
This module contains lemmas about Std.Data.HashSet
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[simp]
@[simp]
theorem
Std.HashSet.isEmpty_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
(m.insert a).isEmpty = false
theorem
Std.HashSet.contains_congr
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a b : α},
(a == b) = true → m.contains a = m.contains b
@[simp]
@[simp]
theorem
Std.HashSet.contains_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → m.contains a = false
theorem
Std.HashSet.not_mem_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → ¬a ∈ m
theorem
Std.HashSet.isEmpty_eq_false_iff_exists_contains_eq_true
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), m.contains a = true
theorem
Std.HashSet.isEmpty_eq_false_iff_exists_mem
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = false ↔ ∃ (a : α), a ∈ m
theorem
Std.HashSet.isEmpty_iff_forall_contains
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), m.contains a = false
theorem
Std.HashSet.isEmpty_iff_forall_not_mem
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α],
m.isEmpty = true ↔ ∀ (a : α), ¬a ∈ m
@[simp]
theorem
Std.HashSet.insert_eq_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} {a : α}, insert a m = m.insert a
@[simp]
theorem
Std.HashSet.contains_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.insert k).contains a = (k == a || m.contains a)
@[simp]
theorem
Std.HashSet.mem_of_mem_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
a ∈ m.insert k → (k == a) = false → a ∈ m
This is a restatement of contains_insert
that is written to exactly match the proof
obligation in the statement of get_insert
.
This is a restatement of mem_insert
that is written to exactly match the proof obligation
in the statement of get_insert
.
@[simp]
theorem
Std.HashSet.contains_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.insert k).contains k = true
@[simp]
theorem
Std.HashSet.mem_insert_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
k ∈ m.insert k
@[simp]
theorem
Std.HashSet.size_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {c : Nat}, (Std.HashSet.empty c).size = 0
theorem
Std.HashSet.isEmpty_eq_size_eq_zero
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α}, m.isEmpty = (m.size == 0)
theorem
Std.HashSet.size_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.insert k).size = if k ∈ m then m.size else m.size + 1
theorem
Std.HashSet.size_le_size_insert
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
m.size ≤ (m.insert k).size
theorem
Std.HashSet.size_insert_le
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.insert k).size ≤ m.size + 1
@[simp]
theorem
Std.HashSet.erase_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashSet.empty c).erase a = Std.HashSet.empty c
@[simp]
theorem
Std.HashSet.isEmpty_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).isEmpty = (m.isEmpty || m.size == 1 && m.contains k)
@[simp]
theorem
Std.HashSet.contains_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = (!k == a && m.contains a)
@[simp]
theorem
Std.HashSet.contains_of_contains_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).contains a = true → m.contains a = true
theorem
Std.HashSet.mem_of_mem_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
a ∈ m.erase k → a ∈ m
theorem
Std.HashSet.size_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size = if k ∈ m then m.size - 1 else m.size
theorem
Std.HashSet.size_erase_le
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).size ≤ m.size
theorem
Std.HashSet.size_le_size_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
m.size ≤ (m.erase k).size + 1
@[simp]
theorem
Std.HashSet.get?_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {a : α} {c : Nat}, (Std.HashSet.empty c).get? a = none
theorem
Std.HashSet.get?_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.isEmpty = true → m.get? a = none
theorem
Std.HashSet.contains_eq_isSome_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.contains a = (m.get? a).isSome
theorem
Std.HashSet.get?_eq_none_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
m.contains a = false → m.get? a = none
theorem
Std.HashSet.get?_eq_none
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α},
¬a ∈ m → m.get? a = none
theorem
Std.HashSet.get?_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a : α},
(m.erase k).get? a = if (k == a) = true then none else m.get? a
@[simp]
theorem
Std.HashSet.get?_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k : α},
(m.erase k).get? k = none
@[simp]
theorem
Std.HashSet.get_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst_1 : LawfulHashable α] {k a : α}
{h' : a ∈ m.erase k}, (m.erase k).get a h' = m.get a ⋯
theorem
Std.HashSet.get?_eq_some_get
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a : α} {h' : a ∈ m},
m.get? a = some (m.get a h')
@[simp]
theorem
Std.HashSet.get!_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : Inhabited α] [inst_1 : EquivBEq α]
[inst_2 : LawfulHashable α] {a : α}, m.isEmpty = true → m.get! a = default
theorem
Std.HashSet.get!_eq_default_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : Inhabited α] [inst_1 : EquivBEq α]
[inst_2 : LawfulHashable α] {a : α}, m.contains a = false → m.get! a = default
theorem
Std.HashSet.get!_eq_default
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : Inhabited α] [inst_1 : EquivBEq α]
[inst_2 : LawfulHashable α] {a : α}, ¬a ∈ m → m.get! a = default
theorem
Std.HashSet.get!_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : Inhabited α] [inst_1 : EquivBEq α]
[inst_2 : LawfulHashable α] {k a : α}, (m.erase k).get! a = if (k == a) = true then default else m.get! a
@[simp]
theorem
Std.HashSet.get!_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : Inhabited α] [inst_1 : EquivBEq α]
[inst_2 : LawfulHashable α] {k : α}, (m.erase k).get! k = default
theorem
Std.HashSet.get?_eq_some_get!_of_contains
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited α]
{a : α}, m.contains a = true → m.get? a = some (m.get! a)
theorem
Std.HashSet.get?_eq_some_get!
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited α]
{a : α}, a ∈ m → m.get? a = some (m.get! a)
theorem
Std.HashSet.get!_eq_get!_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited α]
{a : α}, m.get! a = (m.get? a).get!
theorem
Std.HashSet.get_eq_get!
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited α]
{a : α} {h' : a ∈ m}, m.get a h' = m.get! a
@[simp]
theorem
Std.HashSet.getD_empty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {a fallback : α} {c : Nat}, (Std.HashSet.empty c).getD a fallback = fallback
theorem
Std.HashSet.getD_of_isEmpty
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
m.isEmpty = true → m.getD a fallback = fallback
theorem
Std.HashSet.getD_eq_fallback_of_contains_eq_false
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
m.contains a = false → m.getD a fallback = fallback
theorem
Std.HashSet.getD_eq_fallback
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
¬a ∈ m → m.getD a fallback = fallback
theorem
Std.HashSet.getD_erase
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k a fallback : α},
(m.erase k).getD a fallback = if (k == a) = true then fallback else m.getD a fallback
@[simp]
theorem
Std.HashSet.getD_erase_self
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {k fallback : α},
(m.erase k).getD k fallback = fallback
theorem
Std.HashSet.get?_eq_some_getD_of_contains
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
m.contains a = true → m.get? a = some (m.getD a fallback)
theorem
Std.HashSet.get?_eq_some_getD
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
a ∈ m → m.get? a = some (m.getD a fallback)
theorem
Std.HashSet.getD_eq_getD_get?
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α},
m.getD a fallback = (m.get? a).getD fallback
theorem
Std.HashSet.get_eq_getD
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] {a fallback : α}
{h' : a ∈ m}, m.get a h' = m.getD a fallback
theorem
Std.HashSet.get!_eq_getD_default
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} [inst : EquivBEq α] [inst : LawfulHashable α] [inst : Inhabited α]
{a : α}, m.get! a = m.getD a default
@[simp]
theorem
Std.HashSet.containsThenInsert_fst
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} {k : α}, (m.containsThenInsert k).fst = m.contains k
@[simp]
theorem
Std.HashSet.containsThenInsert_snd
{α : Type u}
:
∀ {x : BEq α} {x_1 : Hashable α} {m : Std.HashSet α} {k : α}, (m.containsThenInsert k).snd = m.insert k