This is an internal implementation file of the hash map. Users of the hash map should not rely on the contents of this file.
File contents: tiny private implementation of List.Sublist
Internal implementation detail of the hash map
- refl: ∀ {α : Type u} {l : List α}, Std.DHashMap.Internal.List.Sublist l l
Internal implementation detail of the hash map
- cons: ∀ {α : Type u} {a : α} {l l' : List α},
Std.DHashMap.Internal.List.Sublist l l' → Std.DHashMap.Internal.List.Sublist (a :: l) (a :: l')
Internal implementation detail of the hash map
- cons_right: ∀ {α : Type u} {a : α} {l l' : List α},
Std.DHashMap.Internal.List.Sublist l l' → Std.DHashMap.Internal.List.Sublist l (a :: l')
Internal implementation detail of the hash map
Instances For
@[simp]
theorem
Std.DHashMap.Internal.List.Sublist.length_le
{α : Type u}
{l₁ : List α}
{l₂ : List α}
(h : Std.DHashMap.Internal.List.Sublist l₁ l₂)
:
l₁.length ≤ l₂.length
theorem
Std.DHashMap.Internal.List.Sublist.of_cons_left
{α : Type u}
{l₁ : List α}
{l₂ : List α}
{a : α}
(h : Std.DHashMap.Internal.List.Sublist (a :: l₁) l₂)
:
@[simp]
theorem
Std.DHashMap.Internal.List.Sublist.cons_iff
{α : Type u}
{a : α}
{l₁ : List α}
{l₂ : List α}
:
Std.DHashMap.Internal.List.Sublist (a :: l₁) (a :: l₂) ↔ Std.DHashMap.Internal.List.Sublist l₁ l₂
theorem
Std.DHashMap.Internal.List.Sublist.map
{α : Type u}
{β : Type v}
(f : α → β)
{l₁ : List α}
{l₂ : List α}
(h : Std.DHashMap.Internal.List.Sublist l₁ l₂)
:
Std.DHashMap.Internal.List.Sublist (List.map f l₁) (List.map f l₂)
theorem
Std.DHashMap.Internal.List.Sublist.mem
{α : Type u}
{l₁ : List α}
{l₂ : List α}
(h : Std.DHashMap.Internal.List.Sublist l₁ l₂)
{a : α}
:
theorem
Std.DHashMap.Internal.List.erase_sublist
{α : Type u}
[BEq α]
(l : List α)
(a : α)
:
Std.DHashMap.Internal.List.Sublist (l.erase a) l