Documentation

ModuleLocalProperties.MissingLemmas.Units

theorem unit_inv_eq_of_left' {M : Type u_1} [Monoid M] {a : M} {b : M} {isunita : IsUnit a} (isunitb : IsUnit b) (left : b * a = 1) :
isunita.unit⁻¹ = isunitb.unit
theorem unit_inv_eq_of_left {M : Type u_1} [Monoid M] {a : M} {b : M} {isunita : IsUnit a} (isunitb : IsUnit b) (left : b * a = 1) :
isunita.unit⁻¹ = b
theorem unit_inv_eq_of_right' {M : Type u_1} [Monoid M] {a : M} {b : M} {isunita : IsUnit a} (isunitb : IsUnit b) (right : a * b = 1) :
isunita.unit⁻¹ = isunitb.unit
theorem unit_inv_eq_of_right {M : Type u_1} [Monoid M] {a : M} {b : M} {isunita : IsUnit a} (isunitb : IsUnit b) (right : a * b = 1) :
isunita.unit⁻¹ = b
theorem unit_inv_eq_of_both {M : Type u_1} [Monoid M] {a : M} {b : M} {isunita : IsUnit a} (left : b * a = 1) (right : a * b = 1) :
isunita.unit⁻¹ = b
theorem unit_inv_eq_iff {M : Type u_1} [Monoid M] {a : M} {b : M} (h : IsUnit a) :
h.unit⁻¹ = b b * a = 1 a * b = 1