noncomputable def
LocalizedModule.BilinearMap
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
{P : Type u_4}
[CommSemiring R]
(S : Submonoid R)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
[AddCommMonoid P]
[Module R P]
(f : M →ₗ[R] N →ₗ[R] P)
:
LocalizedModule S M →ₗ[Localization S] LocalizedModule S N →ₗ[Localization S] LocalizedModule S P
Equations
Instances For
theorem
LocalizedModule.BilinearMap_mk
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
{P : Type u_4}
[CommSemiring R]
(S : Submonoid R)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
[AddCommMonoid P]
[Module R P]
(f : M →ₗ[R] N →ₗ[R] P)
(m : M)
(n : N)
(s : ↥S)
(t : ↥S)
:
((LocalizedModule.BilinearMap S f) (LocalizedModule.mk m s)) (LocalizedModule.mk n t) = LocalizedModule.mk ((f m) n) (s * t)
noncomputable def
LocalizedModule.TensorProductBilinearMap
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
LocalizedModule S M →ₗ[Localization S] LocalizedModule S N →ₗ[Localization S] LocalizedModule S (TensorProduct R M N)
Equations
Instances For
theorem
LocalizedModule.TensorProductBilinearMap_mk
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
(t : ↥S)
:
((LocalizedModule.TensorProductBilinearMap S M N) (LocalizedModule.mk m s)) (LocalizedModule.mk n t) = LocalizedModule.mk (m ⊗ₜ[R] n) (s * t)
noncomputable def
LocalizedModule.TensorProductMap
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
TensorProduct (Localization S) (LocalizedModule S M) (LocalizedModule S N) →ₗ[Localization S] LocalizedModule S (TensorProduct R M N)
Equations
Instances For
theorem
LocalizedModule.TensorProductMap_mk
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
(t : ↥S)
:
(LocalizedModule.TensorProductMap S M N) (LocalizedModule.mk m s ⊗ₜ[Localization S] LocalizedModule.mk n t) = LocalizedModule.mk (m ⊗ₜ[R] n) (s * t)
noncomputable def
LocalizedModule.InvTensorProductBilinearMap
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
M →ₗ[R] N →ₗ[R] TensorProduct (Localization S) (LocalizedModule S M) (LocalizedModule S N)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LocalizedModule.InvTensorProductBilinearMap_apply
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
:
((LocalizedModule.InvTensorProductBilinearMap S M N) m) n = LocalizedModule.mk m 1 ⊗ₜ[Localization S] LocalizedModule.mk n 1
noncomputable def
LocalizedModule.InvTensorProductMap'
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
TensorProduct R M N →ₗ[R] TensorProduct (Localization S) (LocalizedModule S M) (LocalizedModule S N)
Equations
Instances For
theorem
LocalizedModule.InvTensorProductMap'_apply
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
:
(LocalizedModule.InvTensorProductMap' S M N) (m ⊗ₜ[R] n) = LocalizedModule.mk m 1 ⊗ₜ[Localization S] LocalizedModule.mk n 1
noncomputable def
LocalizedModule.InvTensorProductMap
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
LocalizedModule S (TensorProduct R M N) →ₗ[Localization S] TensorProduct (Localization S) (LocalizedModule S M) (LocalizedModule S N)
Equations
Instances For
theorem
LocalizedModule.InvTensorProductMap_apply
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
:
(LocalizedModule.InvTensorProductMap S M N) (LocalizedModule.mk (m ⊗ₜ[R] n) s) = Localization.mk 1 s • LocalizedModule.mk m 1 ⊗ₜ[Localization S] LocalizedModule.mk n 1
theorem
LocalizedModule.InvTensorProductMap_apply'
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
(t : ↥S)
:
(LocalizedModule.InvTensorProductMap S M N) (LocalizedModule.mk (m ⊗ₜ[R] n) (s * t)) = LocalizedModule.mk m s ⊗ₜ[Localization S] LocalizedModule.mk n t
theorem
LocalizedModule.TensorProductMap_rightInv
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
LocalizedModule.TensorProductMap S M N ∘ₗ LocalizedModule.InvTensorProductMap S M N = LinearMap.id
theorem
LocalizedModule.TensorProductMap_leftInv
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
LocalizedModule.InvTensorProductMap S M N ∘ₗ LocalizedModule.TensorProductMap S M N = LinearMap.id
noncomputable def
LocalizedModule.TensorProductEquiv
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
:
TensorProduct (Localization S) (LocalizedModule S M) (LocalizedModule S N) ≃ₗ[Localization S] LocalizedModule S (TensorProduct R M N)
Equations
Instances For
theorem
LocalizedModule.TensorProductEquiv_apply
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
(t : ↥S)
:
(LocalizedModule.TensorProductEquiv S M N) (LocalizedModule.mk m s ⊗ₜ[Localization S] LocalizedModule.mk n t) = LocalizedModule.mk (m ⊗ₜ[R] n) (s * t)
theorem
LocalizedModule.TensorProductEquiv_symm_apply
{R : Type u_1}
[CommSemiring R]
(S : Submonoid R)
(M : Type u_2)
(N : Type u_3)
[AddCommMonoid M]
[Module R M]
[AddCommMonoid N]
[Module R N]
(m : M)
(n : N)
(s : ↥S)
:
(LocalizedModule.TensorProductEquiv S M N).symm (LocalizedModule.mk (m ⊗ₜ[R] n) s) = Localization.mk 1 s • LocalizedModule.mk m 1 ⊗ₜ[Localization S] LocalizedModule.mk n 1