Documentation

Mathlib.Topology.UniformSpace.OfFun

Construct a UniformSpace from a dist-like function #

In this file we provide a constructor for UniformSpace given a dist-like function

TODO #

RFC: use UniformSpace.Core.mkOfBasis? This will change defeq here and there

def UniformSpace.ofFun {X : Type u_1} {M : Type u_2} [OrderedAddCommMonoid M] (d : XXM) (refl : ∀ (x : X), d x x = 0) (symm : ∀ (x y : X), d x y = d y x) (triangle : ∀ (x y z : X), d x z d x y + d y z) (half : ε > 0, δ > 0, x < δ, y < δ, x + y < ε) :

Define a UniformSpace using a "distance" function. The function can be, e.g., the distance in a (usual or extended) metric space or an absolute value on a ring.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem UniformSpace.hasBasis_ofFun {X : Type u_1} {M : Type u_2} [LinearOrderedAddCommMonoid M] (h₀ : ∃ (x : M), 0 < x) (d : XXM) (refl : ∀ (x : X), d x x = 0) (symm : ∀ (x y : X), d x y = d y x) (triangle : ∀ (x y z : X), d x z d x y + d y z) (half : ε > 0, δ > 0, x < δ, y < δ, x + y < ε) :
    (uniformity X).HasBasis (fun (x : M) => 0 < x) fun (ε : M) => {x : X × X | d x.1 x.2 < ε}