Construct a UniformSpace
from a dist
-like function #
In this file we provide a constructor for UniformSpace
given a dist
-like function
TODO #
RFC: use UniformSpace.Core.mkOfBasis
? This will change defeq here and there
def
UniformSpace.ofFun
{X : Type u_1}
{M : Type u_2}
[OrderedAddCommMonoid M]
(d : X → X → M)
(refl : ∀ (x : X), d x x = 0)
(symm : ∀ (x y : X), d x y = d y x)
(triangle : ∀ (x y z : X), d x z ≤ d x y + d y z)
(half : ∀ ε > 0, ∃ δ > 0, ∀ x < δ, ∀ y < δ, x + y < ε)
:
Define a UniformSpace
using a "distance" function. The function can be, e.g., the
distance in a (usual or extended) metric space or an absolute value on a ring.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
UniformSpace.hasBasis_ofFun
{X : Type u_1}
{M : Type u_2}
[LinearOrderedAddCommMonoid M]
(h₀ : ∃ (x : M), 0 < x)
(d : X → X → M)
(refl : ∀ (x : X), d x x = 0)
(symm : ∀ (x y : X), d x y = d y x)
(triangle : ∀ (x y z : X), d x z ≤ d x y + d y z)
(half : ∀ ε > 0, ∃ δ > 0, ∀ x < δ, ∀ y < δ, x + y < ε)
:
(uniformity X).HasBasis (fun (x : M) => 0 < x) fun (ε : M) => {x : X × X | d x.1 x.2 < ε}