group
tactic #
Normalizes expressions in the language of groups. The basic idea is to use the simplifier
to put everything into a product of group powers (zpow
which takes a group element and an
integer), then simplify the exponents using the ring
tactic. The process needs to be repeated
since ring
can normalize an exponent to zero, leading to a factor that can be removed
before collecting exponents again. The simplifier step also uses some extra lemmas to avoid
some ring
invocations.
Tags #
group_theory
Auxiliary tactic for the group
tactic. Calls the simplifier only.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Auxiliary tactic for the group
tactic. Calls ring_nf
to normalize exponents.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Tactic for normalizing expressions in multiplicative groups, without assuming commutativity, using only the group axioms without any information about which group is manipulated.
(For additive commutative groups, use the abel
tactic instead.)
Example:
example {G : Type} [Group G] (a b c d : G) (h : c = (a*b^2)*((b*b)⁻¹*a⁻¹)*d) : a*c*d⁻¹ = a := by
group at h -- normalizes `h` which becomes `h : c = d`
rw [h] -- the goal is now `a*d*d⁻¹ = a`
group -- which then normalized and closed
Equations
- One or more equations did not get rendered due to their size.