Documentation

Mathlib.SetTheory.Cardinal.PartENat

Projection from cardinal numbers to PartENat #

In this file we define the projection Cardinal.toPartENat and prove basic properties of this projection.

This function sends finite cardinals to the corresponding natural, and infinite cardinals to .

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Cardinal.partENatOfENat_toENat (c : Cardinal.{u_1}) :
    (Cardinal.toENat c) = Cardinal.toPartENat c
    @[simp]
    theorem Cardinal.toPartENat_natCast (n : ) :
    Cardinal.toPartENat n = n
    theorem Cardinal.toPartENat_apply_of_lt_aleph0 {c : Cardinal.{u_1}} (h : c < Cardinal.aleph0) :
    Cardinal.toPartENat c = (Cardinal.toNat c)
    @[deprecated Cardinal.toPartENat_natCast]
    theorem Cardinal.toPartENat_cast (n : ) :
    Cardinal.toPartENat n = n

    Alias of Cardinal.toPartENat_natCast.

    @[simp]
    theorem Cardinal.mk_toPartENat_of_infinite {α : Type u} [h : Infinite α] :
    Cardinal.toPartENat (Cardinal.mk α) =
    @[simp]
    theorem Cardinal.aleph0_toPartENat :
    Cardinal.toPartENat Cardinal.aleph0 =
    @[deprecated Cardinal.toPartENat_eq_top]

    Alias of Cardinal.toPartENat_eq_top.

    theorem Cardinal.toPartENat_le_iff_of_le_aleph0 {c : Cardinal.{u_1}} {c' : Cardinal.{u_1}} (h : c Cardinal.aleph0) :
    Cardinal.toPartENat c Cardinal.toPartENat c' c c'
    theorem Cardinal.toPartENat_le_iff_of_lt_aleph0 {c : Cardinal.{u_1}} {c' : Cardinal.{u_1}} (hc' : c' < Cardinal.aleph0) :
    Cardinal.toPartENat c Cardinal.toPartENat c' c c'
    theorem Cardinal.toPartENat_eq_iff_of_le_aleph0 {c : Cardinal.{u_1}} {c' : Cardinal.{u_1}} (hc : c Cardinal.aleph0) (hc' : c' Cardinal.aleph0) :
    Cardinal.toPartENat c = Cardinal.toPartENat c' c = c'
    theorem Cardinal.toPartENat_mono {c : Cardinal.{u_1}} {c' : Cardinal.{u_1}} (h : c c') :
    Cardinal.toPartENat c Cardinal.toPartENat c'
    theorem Cardinal.toPartENat_lift (c : Cardinal.{v}) :
    Cardinal.toPartENat (Cardinal.lift.{u, v} c) = Cardinal.toPartENat c
    theorem Cardinal.toPartENat_congr {α : Type u} {β : Type v} (e : α β) :
    Cardinal.toPartENat (Cardinal.mk α) = Cardinal.toPartENat (Cardinal.mk β)
    theorem Cardinal.mk_toPartENat_eq_coe_card {α : Type u} [Fintype α] :
    Cardinal.toPartENat (Cardinal.mk α) = (Fintype.card α)