Projection from cardinal numbers to PartENat
#
In this file we define the projection Cardinal.toPartENat
and prove basic properties of this projection.
This function sends finite cardinals to the corresponding natural, and infinite cardinals
to ⊤
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Cardinal.partENatOfENat_toENat
(c : Cardinal.{u_1})
:
↑(Cardinal.toENat c) = Cardinal.toPartENat c
theorem
Cardinal.toPartENat_apply_of_lt_aleph0
{c : Cardinal.{u_1}}
(h : c < Cardinal.aleph0)
:
Cardinal.toPartENat c = ↑(Cardinal.toNat c)
theorem
Cardinal.toPartENat_eq_top
{c : Cardinal.{u_1}}
:
Cardinal.toPartENat c = ⊤ ↔ Cardinal.aleph0 ≤ c
@[deprecated Cardinal.toPartENat_natCast]
Alias of Cardinal.toPartENat_natCast
.
@[simp]
theorem
Cardinal.mk_toPartENat_of_infinite
{α : Type u}
[h : Infinite α]
:
Cardinal.toPartENat (Cardinal.mk α) = ⊤
@[deprecated Cardinal.toPartENat_eq_top]
theorem
Cardinal.toPartENat_eq_top_iff_le_aleph0
{c : Cardinal.{u_1}}
:
Cardinal.toPartENat c = ⊤ ↔ Cardinal.aleph0 ≤ c
Alias of Cardinal.toPartENat_eq_top
.
theorem
Cardinal.toPartENat_le_iff_of_le_aleph0
{c : Cardinal.{u_1}}
{c' : Cardinal.{u_1}}
(h : c ≤ Cardinal.aleph0)
:
theorem
Cardinal.toPartENat_le_iff_of_lt_aleph0
{c : Cardinal.{u_1}}
{c' : Cardinal.{u_1}}
(hc' : c' < Cardinal.aleph0)
:
theorem
Cardinal.toPartENat_eq_iff_of_le_aleph0
{c : Cardinal.{u_1}}
{c' : Cardinal.{u_1}}
(hc : c ≤ Cardinal.aleph0)
(hc' : c' ≤ Cardinal.aleph0)
:
theorem
Cardinal.toPartENat_mono
{c : Cardinal.{u_1}}
{c' : Cardinal.{u_1}}
(h : c ≤ c')
:
Cardinal.toPartENat c ≤ Cardinal.toPartENat c'
theorem
Cardinal.toPartENat_lift
(c : Cardinal.{v})
:
Cardinal.toPartENat (Cardinal.lift.{u, v} c) = Cardinal.toPartENat c
theorem
Cardinal.toPartENat_congr
{α : Type u}
{β : Type v}
(e : α ≃ β)
:
Cardinal.toPartENat (Cardinal.mk α) = Cardinal.toPartENat (Cardinal.mk β)
theorem
Cardinal.mk_toPartENat_eq_coe_card
{α : Type u}
[Fintype α]
:
Cardinal.toPartENat (Cardinal.mk α) = ↑(Fintype.card α)