Congruences on the opposite ring #
This file defines the order isomorphism between the congruences on a ring R
and the congruences on
the opposite ring Rᵐᵒᵖ
.
theorem
RingCon.op_iff
{R : Type u_1}
[Add R]
[Mul R]
{c : RingCon R}
{x : Rᵐᵒᵖ}
{y : Rᵐᵒᵖ}
:
c.op x y ↔ c (MulOpposite.unop y) (MulOpposite.unop x)
theorem
RingCon.unop_iff
{R : Type u_1}
[Add R]
[Mul R]
{c : RingCon Rᵐᵒᵖ}
{x : R}
{y : R}
:
c.unop x y ↔ c (MulOpposite.op y) (MulOpposite.op x)
@[simp]
theorem
RingCon.opOrderIso_symm_apply
{R : Type u_1}
[Add R]
[Mul R]
(c : RingCon Rᵐᵒᵖ)
:
(RelIso.symm RingCon.opOrderIso) c = c.unop
The congruences of a ring R
biject to the congruences of the opposite ring Rᵐᵒᵖ
.
Equations
- RingCon.opOrderIso = { toFun := RingCon.op, invFun := RingCon.unop, left_inv := ⋯, right_inv := ⋯, map_rel_iff' := ⋯ }